
CHC-Based Verification of Programs Through

Graph Decompositions

Marco Faella1, Giulio Garbi2,3, Salvatore La Torre3,

Gennaro Parlato2*

1Dipartimento di Ingegneria Elettrica e delle Tecnologie
dell’Informazione, Università degli Studi di Napoli “Federico II”, Via

Claudio 21, Napoli, 80125, Italy.
2Department, Università degli Studi del Molise, C.da Fonte Lappone,

Pesche, 86090, Italy.
3Dipartimento di Informatica, Università degli Studi di Salerno, Via

Giovanni Paolo II 132, Fisciano, 84084, Italy.

*Corresponding author(s). E-mail(s): gennaro.parlato@unimol.it;
Contributing authors: m.faella@unina.it; giulio.garbi@gmail.com;

slatorre@unisa.it;

Abstract

We present a novel methodology for automated program analysis that leverages
graph encodings of computations. The crux of our approach lies in restructur-
ing the program behavior graphs through tree decompositions of bounded width.
To achieve this, we introduce a notion of labeled multigraph, called nested-word
shape, that is used as a summary for portions of program behavior graphs. Such
multigraphs are used within the construction of a symbolic data-tree automa-
ton (Sdta), a recently introduced notion of automaton designed to accept tree
data structures. We use Sdtas to capture the tree decompositions of the program
behavior graphs of a given program. Verification of the original program is then
accomplished by checking the emptiness of the data-tree language accepted by
these Sdtas, which can be effectively reduced to the satisfiability of constrained
Horn clauses (CHC). Our approach results in an under-approximate analysis
parameterized by the width k of the tree decomposition used for the analysis,
and thus provides a complete method for the classes of programs whose behavior
graphs have bounded treewidth. We detail our methodology for recursive sequen-
tial programs, which enjoy the bounded treewidth property, and subsequently
extend it to concurrent programs. Notably, our approach shows promise across

1

an even broader spectrum of program classes, including distributed systems and
concurrent programs operating under weak memory models.

Keywords: Program verification, tree decompositions, treewidth, tree automata

1 Introduction

In this paper, we present a new methodology for automatically verifying properties of
programs that encompass a range of complex features in a cohesive manner. Program
computations are frequently represented as sequences of transitions in a flat transition
system, possibly with an infinite number of states. Each state encapsulates the current
program instruction being executed and the values of all statically allocated variables.
Depending on the program type, supplementary information may be stored, including
heap structures in case of dynamic memory allocation, call stacks for recursive calls,
and various data structures for managing concurrency (such as multiple call stacks,
FIFO channels, etc.). The incorporation of these additional features often results in
configurations of unbounded size. This unboundedness, in various forms, promptly
leads to undecidability when attempting to ascertain properties about programs. Fur-
thermore, the challenge escalates when attempting to reason about the collective
interplay of these features, making the process exceedingly difficult, especially in the
context of creating automated methods for program analysis.

The methodology introduced in this paper relies on a graph-based representation
of computations, specifically termed behavior graphs. Within these graphs, vertices
serve as representations of basic (finite) information within a given state. Various
types of edges are employed to encapsulate state transitions, connections between
states, and additional data structures used in the computation. To provide a visual
example, envision a stack, which can be depicted by establishing a link between the
pair of states associated with a push and its corresponding pop operation (see Fig. 3
for an illustration). Similarly, a queue can be captured by connecting an enqueue
operation to its corresponding dequeue operation. These instances showcase the flexi-
bility of behavior graphs in representing diverse computational structures, and further
variations are readily conceivable. In conclusion, such graph representations of pro-
gram behaviors provide a unified framework that empowers us to analyze programs
with diverse features using the same reasoning engine and techniques developed for
sequential recursive programs, as discussed later in this section.

The concept of representing executions using labeled graphs has been previously
explored in the context of automata that employ auxiliary storage, and here, we
extend this idea to programs. Nested-words effectively capture executions of push-
down automata, as demonstrated in [1]. Similarly, multiply nested-words encode runs
of multistack pushdown automata. Furthermore, stack-queue graphs offer a versa-
tile framework for modeling distributed automata, where each process is a pushdown
automaton employing queues and stacks, as highlighted in [2]. In this paper, we adopt
this concept from the realm of automata and elevate this representation to programs,
where vertices are not labeled with symbols from a finite alphabet but rather with

2

tuples of numbers representing the evaluations of scalar variables in a given point of
the execution.

Our approach enables the automatic analysis of programs whose computations can
be represented as graphs of bounded treewidth. A class of graphs has treewidth k if
each graph within it can be structured with a tree decomposition of width at most k+1.
This means that the graph can be rearranged into a tree, assigning to each node a set
(called bag) containing at most k+1 graph vertices. This arrangement must cover all
vertices and edges, and any vertex appearing in the bags of two different nodes must
also belong to all the bags along the path connecting those nodes. In essence, for a
behavior graph G, a tree decomposition T of width k ensures that we can verify the
consistency of the computation described by G by processing the information stored
at each node of its tree decomposition and its neighbors. To ensure consistency across
the edges of G, it is sufficient to examine one bag at a time. Furthermore, to guarantee
that each vertex retains the same information in any bag where it appears, we only
need to compare the bag at a node with those at its children, for each node in the tree.

The primary technical contribution of this paper is the development of a mechanism
for generating binary trees that encode all tree decompositions of the behavior graphs
under analysis. To achieve this, we introduce the concept of the shape of a behavior
graph. A shape represents a small subgraph of a behavior graph or condenses explored
portions while retaining the other nodes and edges. Shapes are themselves graphs,
and we use them instead of bags in our tree decompositions. At an internal node,
the shape condenses the information of the shapes labeling its children. This process
involves initially a merge operation that glues the shapes of the two children, followed
by a contraction operation that condenses vertices that have been fully explored.
Essentially, in constructing a tree decomposition, we use these shapes to summarize
the information of the portion of the behavior graph covered by the nodes of a subtree.
In particular, we show that the trees of shapes obtained through this method, called
merge-and-contract trees, can exactly represent the tree decompositions of nested-
words.

We encode merge-and-contract trees for a given program P into a symbolic data-tree

automaton that accepts all and only the behavior graphs of P for the given param-
eter k. Symbolic data-tree automata, or Sdtas, are computational models designed
for symbolic processing of tree-structured data, introduced in [3]. In contrast to tradi-
tional tree automata that operate on concrete data values taken from a finite alphabet,
Sdtas manipulate symbols and employ logical constraints expressed with formulas of
quantifier-free first-order theories to recognize and process complex patterns within
tree structures. For the encoding of merge-and-contract trees, each time an original
edge of the encoded behavior graph is encountered in a shape (located in the shapes
associated with the leaves of the merge-and-contract tree), the automaton enforces
the constraints imposed by the program as part of its transition function. For inter-
nal nodes of the tree, we utilize the triples formed by the two shapes at the children
and the one labeling the parent, where the vertices of the shape carry the evaluation
of the variables associated with them. Here, we ensure, with constraints injected into
the transition function of the Sdta, that the valuation of the variables in the children
shapes representing the same vertex in the parent shape, and hence the final behavior

3

graph, agrees on the assigned values. When the root is labeled with a shape represent-
ing a complete behavior graph failing a program assertion, the tree is accepted. Thus,
checking the emptiness of the constructed Sdta enables us to verify the fulfillment of
the assertions for a program. Given that this reduction is amenable to automation,
our proposed approach establishes an automatic methodology for program analysis.

The emptiness problem for Sdtas is undecidable in general, but it can be reduced
to the satisfiability problem of constrained Horn clauses (CHCs), offering several
advantages. Many algorithms have been developed for solving systems of CHCs, often
building upon or generalizing techniques from the field of automatic program verifica-
tion [4–6]. Consequently, CHCs are extensively used as an intermediate representation
in various verification and synthesis tools [7–14]. Our reduction approach provides
several advantages. Firstly, it enables a separation of concerns, allowing us to focus
solely on aspects related to the specific class of programs under consideration. Simul-
taneously, it provides CHC solver developers with a clean framework that can be
instantiated using various model-checking algorithms and specialized decision proce-
dures. Our reduction to data tree automata allows us to reason about programs using
approaches and techniques akin to those employed when reasoning about finite-state
automata with auxiliary storage. In fact, we do not need to handle data directly and
can concentrate solely on structural aspects. Furthermore, by expressing CHCs in the
standard SMT-LIB language enables the use of different CHC engines and capitalize
on their consistent year-over-year performance improvements, as demonstrated by the
annual competition on constrained Horn clauses CHC-COMP [15].

In this paper, we meticulously elaborate on the intricacies of our approach for
recursive sequential programs. Our aim is to present the concepts in a thorough man-
ner, offering comprehensive insights while minimizing the use of notation. Specifically,
the behavior graphs in this context take the form of nested-words, and we refer to their
corresponding shapes as nested-word shapes. Since nested-words admit a tree decom-
position of width two, we establish that our approach empower us to prove the full
correctness of the programs. We then extend these foundational concepts to concur-
rent programs, elevating all relevant ideas and constructions to develop verification
approaches for this more complex class of programs. Unlike nested-words, the class of
behavior graphs for concurrent programs lacks a fixed bound on their treewidth. Con-
sequently, our approach in this scenario can only verify correctness up to a given fixed
bound. However, if it is known that the behavior graphs of the program under analysis
is bounded, our approach remains effective in proving correctness. In cases where the
behavior graph is unbounded, our method can still serve as an under-approximation
technique.

This paper builds upon our previous work [16], expanding and refining the concepts
therein to lay the groundwork for the contributions presented here. We offer a more
comprehensive overview of the approach, providing formal definitions of the various
constructions and formal correctness proofs. A key addition to our methodology is the
utilization of symbolic data-tree automata (Sdtas), which allows us to streamline the
analysis and ultimately reduce it to the satisfiability of constrained Horn clauses.

4

〈prgm〉 ::= Var ; 〈proc〉+

〈proc〉 ::= procedure p begin 〈pc stmt〉+ end

〈pc stmt〉 ::= pc : 〈stmt〉;

〈stmt〉 ::= g :=〈expr〉 | skip
| assume(〈pred〉) | assert(〈pred〉)
| if 〈pred〉 then 〈pc stmt〉+ else 〈pc stmt〉+ fi

| while 〈expr〉 do 〈pc stmt〉 do

| call p | return

Fig. 1 BNF grammar of (sequential) programs.

Organization of the paper: The rest of the paper is structured as follows. In
Section 2, we formally define the recursive sequential programs, and related verifica-
tion problems. In Section 3, we review basic notions of multigraphs, with a specific
emphasis on nested-words and tree decomposition of multigraphs. Furthermore, we
introduce a novel form of tree decomposition integral to out methodology. Moving to
Section 4, we introduce the notion of nested-word shape, as a means to succinctly
represent portions of nested-words. We define two essential operations on nested-word
shapes, namely merge and contraction, and establish key properties of these opera-
tions pivotal for the development of our verification methodology. Section 5 provides
a characterization of tree decompositions of nested-words through merge-and-contract
trees, leveraging the insights gained in Section 4. The methodology itself is detailed
in Section 6, beginning with an extension of nested-words through the annotation
of nodes with program data to faithfully capture program executions. We show that
this approach can be factorized by leveraging decompositions provided by merge-and-
contract trees. Finally, we outline the encoding of these extended trees into symbolic
data tree automata. In Section 7, we discuss the extension of our methodology to
concurrent programs by lifting up our methodology to handle multiple nested-words.
We delve into related work in Section 8, and Section 9 provides concluding remarks,
extensions, and a discussion on future directions.

2 Programs with recursive procedure calls

To simplify our discussion while maintaining general applicability, we focus on sequen-
tial programs with recursive procedure calls, excluding local variables and procedure
parameters. This choice ensures consistent access to all variables across procedures,
achieved through the sole use of global variables. Henceforth, we will refer to these as
simply “variables” throughout the paper.

Syntax. The syntax of our programs is defined by the BNF grammar presented in
Fig. 1. Every program starts with a finite set of global variables, denoted by Var ,
accessible to all procedures within the program. Each variable belongs to a specific
data type, which often has an infinite data domain. Common types include integers,
floating-point rationals and real numbers, booleans (B), and fixed-length bit vectors.

5

Additionally, we assume a language of expressions 〈expr〉, and a language of predicates
〈pred〉 over the variables.

After the variable declarations, programs consists of one or more procedures,
including a special procedure called main that is executed first to start the program
execution. Each procedure contains a non-empty sequence of labeled statements of the
form pc :〈stmt〉 where pc (program counter or program location) is a unique label that
identifies a specific statement within the procedure, and 〈stmt〉 represents a statement
in a C-like language. A statement stmt can be an assignment, a skip-statement, an
assume- or assert-statement, a conditional statement, a while-loop, a call to a pro-
cedure, or a return-statement. We assume that each procedure has return as its last
statement. Furthermore, return is never the first statement of a procedure.

For a given program P , we use the notation PCP (and similarly, CallP , RetP)
to represent the set of all program counters pc for which pc : stmt (resp., pc : call
p, pc : return) is a labeled statement within the program P . Additionally, for each
pc ∈ CallP we employ afterCallP (pc) to denote the (unique) program counter pc′ such
that pc′ : stmt is the statement that is executed after the return of the procedure call
with program counter pc.

Semantics. The semantics is given as a transition system. Each program can make
procedure calls and manipulate variables. Consequently, a state is formally defined as
a configuration of the form 〈ν, pc,St〉 where ν represents the valuation of the variables,
pc ∈ PCP is the program counter, and St captures the content of the call stack (i.e.,
the control locations of the pending procedure calls). An initial configuration C =
〈ν, pc,St〉 is characterized by specific conditions: the program counter pc corresponds
to the first statement of procedure main, and the call stack St is empty.

The transition relation between configurations, denoted by →֒, is defined as usual.
Assignment statements not only advance the program counter but also update the
variable evaluation. The skip-statement simply updates the program counter to
the next one. The control-flow statements, on the other hand, update the program
counter, possibly based on a predicate (condition). Specifically, assume- and assert-
statements both advance the program counter to the next one if the condition holds
true, and halt the computation (i.e., no subsequent configuration is allowed) otherwise.
The distinction between these two statements is evident when considering correct-
ness: assume-statements are used to build more accurate program models by filtering
out spurious computations, while assert-statements are used to specify correctness
requirements, with a failed assertion signaling an error. Typically, a failing assertion
leads to an error state, although we do not introduce a specific configuration for it
here.

During a procedure call, the current location of the caller (pc) is pushed onto the
stack, and the control shifts to the first location of the called procedure. At a return
statement, the control location at the top of the stack is popped, say pc, and the
control moves to location afterCallP (pc).

A computation of a program is a sequence of configurations C0C1 . . . Cn, where
C0 is initial, and Ci−1 →֒ Ci for every i ∈ [1, n]. An error computation is a com-
putation C0C1 . . . Cn that fails an assertion. In other words, it is characterized by

6

Var x, y;

procedure main begin
0: assume(x=1 ||x=2);
1: call boo;
2: return;

end

procedure boo begin
3: y := x;
4: call foo;
5: assert(x=1);
6: call foo;
7: return;

end

procedure foo begin
8: if (y > 0) then
9: y := y − 1;
A: call foo;
B: else skip; fi
C: return;

end

Fig. 2 A sample program.

Cn = 〈ν, pc,St〉, pc : assert(cond) and, upon assigning the program variables with ν,
cond evaluates to false.

Verification problem. We address the assertion checking problem, which involves
determining, for a given program P , whether there exists an error computation of P .

Example 1 Throughout the remainder of the paper, we utilize the program P illustrated
in Fig. 2 as a running example. P is a simple program with three possible behaviours
contingent on the initial value of the variable x, namely, 1, 2, or any other value. In the
latter scenario, the condition of the assume statement fails, leading to an immediate halt in
the computation. In the remaining cases, the procedures boo and foo get recursively invoked
until the assert statement at program counter 5 is reached. Subsequently, a computation
with x = 2 violates the assertion, thereby reaching an error state. Conversely, a computation
with x = 1 progresses uninterrupted, proceeding through the entirety of procedure main.

2.1 Formulas for programs

In our methodology, we shall employ template formulas that succinctly capture the
semantics of a program.

Data signatures. Data signatures are similar to structured data types in pro-
gramming languages. A data signature S is defined as a finite collection of pairs
{id i : typei}i∈[n], where each id i represents a field name, and typei denotes the cor-
responding data type. Common types include integers, floating-point rationals, and
real numbers, as well as the Boolean type B and fixed-length bit vectors. An evalua-

tion ν of S is a mapping that associates each field name id in S with a value of the
corresponding type, denoted by ν.id . We denote by E(S) the set of all evaluations of S.

Data logic.We use formulas expressed in quantifier-free first-order logic with equality,
following standard syntax and semantics [17]. To accommodate various data types of
program variables, we adopt many-sorted signatures. Specifically, we employ a many-
sorted first-order logic D with sorts data1, . . . , datan. Each datai has a corresponding
logic Ddatai

permitting function symbols of type datah
i 7→ datai and relation symbols

of type datah
i 7→ B, with arity h. These logics encompass a range of features, including

but not limited to integer or real arithmetic, arrays, and more. As a result, we assume
that D is well-equipped to handle diverse data types and program variables, ensuring
adequacy for a variety of scenarios.

Program template formulas. For a program P , we define the data signature Sstate
P ,

which incorporates distinct fields for each program variable, including its type within

7

the program. Additionally, we define SP as the data signature for P , consisting of
two fields: one named state of type Sstate

P , and another field called pc representing the
program counter (type PCP). In the following, it is assumed that variables ν, ν1, and
ν2 are all of type SP .

To articulate the semantics of program P , we introduce the following template
formulas:
Initial states: InitP (ν) is a formula that holds true if and only if ν.pc is the program

counter of the first statement of procedure main.
State update: TransP (ν1, ν2) imposes constraints on program variables and coun-

ters in consecutive program configurations. For instance, in an assignment, it
computes the variables in the next state ν2.state based on those in the current
state ν1.state and updates the program counter. In the event of a procedure
call, such as call p, it ensures that the valuations of the fields in ν1.state and
ν2.state corresponding to program variables align, while ν2.pc is set to the pro-
gram counter of the initial statement in p. Finally, if ν1 corresponds to a return
statement, TransP (ν1, ν2) only copies the values of ν1 to ν2 field by field, leaving
ν2.pc unconstrained. The handling of ν2.pc is deferred to the subsequent template
formula.

Matching call-return: CallRetP (ν1, ν2) is a formula that evaluates to true if and
only if ν1.pc ∈ CallP , and ν2.pc = afterCallP (ν1.pc).

Error state: The formula AssertionFailP (ν) holds true if and only if ν.pc is the
program counter of an assertion statement whose expression evaluates to false on
the program variable valuation ν.state.

3 Multigraphs and Decompositions

In this section, we review fundamental notions related to multigraphs and recall the
concept of nested-words as a subclass of multigraphs. In our framework, nested-words
will serve as the underlying structure for our representation of program executions.
Additionally, we revisit the concept of graph decomposition, refining it by also mapping
the edges to bags. This will better align with our specific objectives.

Multigraphs. A multigraph is defined as a structure G = (V,E1, . . . , En), where V
is a finite set of vertices, and each Ei ⊆ (V × V) represents a set of directed edges. In
this context, an edge (u, v) ∈ Ei is also denoted as uEiv. Furthermore, for two vertices
u, v ∈ V , we use the notation uE∗

i v to indicate that either u = v, or there exists a
node z ∈ V such that uE∗

i z and zEiv. As usual, we use uE+
i v to denote that uE∗

i v

and there is at least an edge connecting u to v.
Given a multigraph G = (V,E1, . . . , En), a sub-multigraph of G is a multigraph

G′ = (V ′, E′
1, . . . , E

′
n) such that the vertices of G′ are a subset of the vertices of G,

i.e., V ′ ⊆ V , and the edge sets of G′ are each contained within the corresponding edge
set of G, i.e., for each index i ∈ [1, n], E′

i ⊆ Ei.
A graph is a multigraph G = (V,E) with a single set of edges. A line graph is a

graph in which, for a total order of all the vertices v0, v1, . . . , vm, the set of edges E is
defined as E = {vj−1Evj | j ∈ [m]}.

8

v0V : v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

Fig. 3 Illustration of a nested-word (multigraph).

Given two multigraphs Gi = (V i, Ei
1, . . . , E

i
n) for i ∈ [1, 2], the union of G1 and

G2 is defined as (V 1 ∪ V 2, E1
1 ∪ E2

1 , . . . , E
i
n ∪ E2

n). G
1 and G2 are edge-disjoint if

E1
i ∩ E2

i = ∅ for i ∈ [1, n].

Matching relations. For a line graph (V,❀), we say that y⊆ V × V is a matching

relation w.r.t. ❀ (resp. loose matching relation) if for every u, v, x, y ∈ V :
• if uy v, then u❀

+ v (resp. u❀
∗ v);

• if uy v, u′ y v′, and u❀
+ u′ (resp. u❀

∗ u′), then either v ❀
+ u′ or v′ ❀+ v

(resp. v′ ❀∗ v).

Definition 1 (Nested-Words) A nested-word1 is defined as a multigraph (V,→,y),
subject to the following two conditions:

1. (V,→) is a line graph, and

2. y is a matching relation w.r.t. →;

The edges in → and y are referred to as linear edges and matching edges, respectively. A
sub-nested-word is any sub-multigraph of a nested-word. �

In Fig. 7, we illustrate an instance of a nested-word, featuring vertices v0 through
v17. As suggested by our notation, the y-edges are depicted as curved arrows, while
the →-edges are represented as straight arrows.

Tree Decompositions and Treewidth of Multigraphs. Our methodology
employs tree decompositions of nested-words to analyze the computations of the given
program. Initially, we revisit the concepts of tree decomposition and treewidth.

A binary tree T is formally represented as a multigraph T = (V, L,R). To facilitate
technical considerations, we define V as a finite and prefix-closed subset of {0, 1}∗.
Within this framework, the elements of T are referred to as nodes, and the node
identified by ǫ is called the root of T . The edge relation is implicitly defined as follows:
xLy if and only if y = x0, and xRy if and only if y = x1. When xLy (respectively,
xRy), we say that y is the left (respectively, right) child of x, and x is the parent of
y. A leaf is characterized as a node with no children, while an internal node is defined
as a node that is not a leaf. T is fully binary if every internal node u of T has exactly
two children.

Informally, a tree decomposition of a graph G is a binary tree characterized by the
following properties. The nodes of the tree are labeled with sets of vertices from G,
referred to as bags. Each edge or vertex in G is encompassed by at least one bag within

1We assume that there are no unmatched calls and returns, differently from [1].

9

the decomposition – an edge is considered covered if both of its endpoints are contained
within a same bag. Moreover, if a vertex v belongs to the bags of two distinct nodes,
then all bags along the path connecting those nodes also include vertex v. Formally,
a tree decomposition is defined as follows.

Definition 2 (Tree Decomposition and Treewidth) A tree decomposition of a multi-
graph G = (V,E1, . . . , En) is defined as a pair D = (T, {bagt}t∈N), where T is a binary tree
with a set of nodes N , and bagt ⊆ V satisfies the following properties:

• For every v ∈ V , there exists at least one node t ∈ N such that v ∈ bagt.

• For every i ∈ [1, n] and (u, v) ∈ Ei, there is a node t ∈ N such that u, v ∈ bagt.

• If u ∈ (bagt ∩ bagt′), then u ∈ bagt′′ for every node t′′ of T lying on the unique path
connecting t to t′ in T .

The width of a tree decomposition (T, {bagt}t∈N) is the size of the largest bag in it, minus
one, formally, maxt∈N{|bagt|}−1. The treewidth of a multigraph is the minimum width over
all its tree decompositions. �

Example 2 Fig. 4(a) provides a visual representation of a tree decomposition of the nested-
word illustrated in Fig. 3. As required by the definition, each vertex within v0, . . . , v17 belongs
to at least one bag, and labels all the nodes along a path connecting two nodes labeled by it.
For instance, vertex v11 is part of the bags of nodes n0, n1, n2, n4 and n5. If we remove v11
from n1, the resulting tree ceases to be a tree decomposition.

The explicit coverage of the edges is not presented in Fig. 4(a). However, a witness of
this coverage is given in Fig. 4(b). This augmented version of the tree decomposition will be
discussed in more detail later in this section.

For the tree decomposition from Fig. 4(a), the maximum size over all the bags is 6 which
is the size of n3 and n4. Therefore, the width of this decomposition is 5. Note that this width
falls short of being optimal; in fact for nested-words it is always possible to determine a tree
decomposition of width at most 2, as shown by the following theorem. �

Theorem 1 ([2]) Any nested-word has treewidth at most 2.

Augmented tree decompositions. In this context, we refine the previously defined
tree decomposition concept to better suit our specific objectives. We augment tradi-
tional tree decompositions by adding to each node some edges of the graph such that
each edge is mapped exactly to a node whose bag contains both of its endpoints. It
is worth noting that such a labeling is always feasible, as by definition, each edge
is covered by at least one bag. To provide a concrete illustration, consider the tree
decomposition depicted in Fig. 4(b). We augment this decomposition by representing
the covered edges and vertices through corresponding fragments of the nested-word.
Formally:

10

n0
{v0, v3, v11, v17}

(a)

n1
{v0, v3, v11, v16, v17}

n2
{v3, v6, v11}

n3

{v0, v1, v2, v3, v16, v17}

n4
{v11, v12, v13, v14, v15, v16}

n5

{v3, v4, v5, v6, v11}

n6

{v6, v7, v8, v9, v10}

n0

(b)

v0 v3 v11v17

n1

v0 v3 v11v16v17

n2

v3 v6 v11

n3

v0 v1 v2 v3 v16v17

n4

v11v12v13v14v15v16

n5

v3 v4 v5 v6 v11

n6

v6 v7 v8 v9 v10v11

Fig. 4 Example of: (a) a tree decomposition, and (b) a strict augmented tree decomposition of the
nested-word illustrated in Fig. 3.

Definition 3 (Augmented Tree Decomposition) An augmented tree decomposition of a
multigraph G = (V,E1, . . . , En) is formally defined as a pair D = (T, {Gt}t∈N), where the
components are specified as follows:

• T is a fully binary tree with a set of nodes N .

• Gt = (V t, Et
1, . . . , E

t
n) is a sub-multigraph of G.

• (T, {V t}t∈N) is a tree decomposition of G.

• For every i ∈ [1, n], every edge aEib is an edge of exactly one multigraph Gt with t ∈ T ,
and moreover,

⋃
t∈T E

t
i = Ei.

The width of an augmented tree decomposition D is the width of the underlying tree
decomposition (T, {V t}t∈N). �

For nested-words, we are interested in augmented tree decompositions with two
additional properties: edges are mapped to the leaves of the tree decomposition and

11

the bag labeling the root must always contain the first and the last vertex in the
nested-word. The motivation behind these the two properties stems from their role in
our methodology. Formally:

Definition 4 (Strict Augmented Tree Decomposition of Nested-Words) A strict
augmented tree decomposition of a nested-word ω = (V,→,y) is a pair D = (T, {Gt}t∈N),
where D is an augmented tree decomposition and the following conditions hold:

1. for any internal node t of T , Gt has an empty set of edges, formally expressed as
→t=y

t= ∅;

2. the set V ε, representing the set of vertices of the multigraph labeling the root of T ,
includes the first and the last vertices in the total order induced by →. �

The augmented tree decomposition given in Fig. 4(b) is a strict one. In fact, the
internal nodes are only labeled with vertices, and v0 and v17, i.e., the first and last
vertices of the nested-word ω given in Fig. 3, label the root.

Notably, the two additional requirements of strict augmented tree decompositions
do not impose any limitations on the decomposability of nested-words: we demon-
strate that for any tree decomposition of width k, there exists a corresponding strict
augmented tree decomposition of the same width, and viceversa.

Theorem 2 A nested-word ω admits a tree decomposition of width k if and only if it admits a
(strict) augmented tree decomposition of width max(2, k). Moreover, any nested word admits
a strict augmented tree decomposition of width at most 2.

Proof The converse direction of the theorem is straightforward, as the width of an augmented
tree decomposition precisely aligns with the width of the underlying tree decomposition.

To complete the proof, we need to show that for any tree decomposition of a nested-word,
there exists a corresponding strict augmented tree decomposition with the same width.

It is simple to obtain an augmented tree decomposition starting from a tree decomposi-
tion. In fact, since every edge is covered by at least one bag we choose exactly one node and
include the edge in it.

To adhere to condition 1 of Definition 4, we propose an iterative transformation procedure
that can be applied to a given augmented tree decomposition. For each internal node t labeled
with edges, the procedure unfolds as follows:

1. insert a fresh internal node tp as child of t’s parent (if t is the root make this new node
the new root), make t its left child and add a leaf tf as right child of tp;

2. label tp and t with a multigraph that retains only the vertices form the multigraph Gt

labeling t, and label tf only with the edges (along with all their endpoints) of Gt.

Clearly, the augmented tree decomposition resulting from this process maintains the same
width as the initial one, and the asserted property holds.

Now, starting from an augmented tree decomposition of width k satisfying property 1
of strict augmented tree decompositions, we use induction to prove that we can construct
an augmented tree decomposition of width at most k where also property 2 holds. We show
this property for any n-prefix of a nested-word. Here, for n-prefix we refer to the sub-nested

12

word composed by the first n vertices in the ordering induced by the linear edges and their
incident edges. Notably, a prefix may contain unmatched calls but no unmatched returns,
and any nested word can be considered as a prefix of another nested word. The base case
is straightforward. For a 1-prefix of a nested-word we can construct a strict augmented tree
decomposition using a single node labeled with the entire nested-word. We now proceed to
the induction step. Assume that the claim holds true for any n-prefix with at most n ≥ 1
vertices. Let ω denote an (n+1)-prefix of a nested-word with its vertices listed as v1 . . . , vn+1

according to the linear ordering induced by the edges of ω. We consider two cases.

1. vn+1 is not the right endpoint of a matching edge. In this case, there is only a linear edge
incident to vn+1. Thus, by applying the induction hypothesis to the prefix of ω formed
by the first n vertices (and the edges whose endpoints are incident on v1 . . . , vn), we
get for it a strict augmented tree decomposition Dn of width at most k. We construct
the desired tree decomposition Dn+1 for ω as follows. Create a new root node, and
make Dn its left subtree, and add another fresh node as its right subtree. We label the
root with only vertices v1, vn and vn+1. Then, label its right child (the leaf) with the
multigraph formed by only the linear edge connecting vn to vn+1; this is clearly a strict
augmented tree decomposition and its width is at most k.

2. vn+1 is the right endpoint of a matching edge. Let vh denote the other endpoint of this
edge. We can thus partition the (n + 1)-prefix into a prefix up to vh, and a nested-
word from vh to vn+1 (note that no edges connect vertices from these two multigraphs
except for vh). The strict augmented three decomposition is then obtained by taking a
new node and making it the root of a tree where the left subtree is a strict augmented
tree decomposition DL of the h-prefix and the right subtree is that of the nested word
from vh to vn+1, say DR. By the induction hypothesis these two tree decompositions
exist and have width at most k. Now to conclude the construction we just label the root
with v1, vh and vn+1. The resulting tree is clearly a tree decomposition since by the
inductive hypothesis, v1 and vh must label the root of DL and vh and vn+1 the root of
DR. Moreover, the root is not labeled with edges and the width of the constructed tree
decomposition is the maximum over k and 2.

The second part of the theorem is a direct consequence of the first part and Theorem 1. �

4 Nested-Word Shapes

In this section, we introduce the notion of nested-word shape (nw-shape), a formalism
crafted to encode sub-nested-words such that some parts are expressed explicitly and
others retain only the important parts needed for composition with other nw-shapes.
The idea is to use them in our methodology as an intermediate representation to
generate tree decompositions of nested-words progressively in steps.

Technically, a nw-shape is a labeled multigraph that is essentially a sub-nested-
word with the addition of a total ordering over the vertices and a labeling of the
vertices, and with some minor deviations.

For sub-nested-words, a total ordering can be inherited by the corresponding
nested-word. However, they can be formed of separate multigraph components. There-
fore, one needs to explicitly mention such ordering when the nested-word is not known.
Similarly, also nw-shapes may be formed of separate multigraph components and,
therefore, in our definition we fix a total ordering among all the vertices of a nw-shape.
This total ordering is given as an edge relation that forms a line graph when coupled

13

with the vertices of the nw-shape and is such that the linear edges of the nw-shape are
a subset of the edges of such line graph (i.e., the total ordering must not contradict
the partial ordering defined by the linear edges).

Then, we equip nw-shape with two kinds of labeling. The first labeling, which we
usually denote with τ , gives a type to each vertex, distinguishing between starting
endpoints (call) and ending endpoints (ret) of a matching edge, and any other vertex
(int for internal). The second labeling, which we usually denote with ℓ, is used to
annotate a vertex with the information whether the incident left (l) and right (r) linear
edges, and the possibly incident matching edge (m) are present in the multigraph . For
the left and the right linear edges this information is only a matter of convenience,
since that information could be computed from the set of linear edges. However, for
the matching edges instead it is needed since we allow for the contraction of portions
of the multigraph that do not contain both the endpoints of a matching edge. In fact,
when such a portion of graph is contracted, we substitute a removed endpoint with one
of the surviving vertices according to a search strategy that will be detailed later in
the paper. Thus, we use the marking to distinguish for the vertices of type either call
or ret between the cases when the incident matching edge is the expected one or not.

A second difference with the sub-nested-words concerns with the matching edges.
For nw-shapes, we relax the constraint we have imposed on the nested words and only
require that the matching edges just define a loose matching relation. This is required
in order to allow the contraction of portions that do not contain both the endpoints
of a matching edge.

The third and last difference with the sub-nested-words is that we do not allow
for isolated vertices in nw-shapes. This restriction is only introduced to simplify our
notation mostly in relation to the merging of nw-shapes. It could be avoided by slightly
modifying the conditions in our results and deal with isolated vertices as a separate
corner case.

Fig. 5 gives some examples of labeled multigraphs. In the figure, the total ordering
is given implicitly by listing the vertices from left to right according to the intended
ordering (that matches also the ordering given by increasing indices). The τ labeling is
shown by denoting the call vertices as white ellipses, the ret vertices as grey ellipses,
and the int vertices as black circles. For the ℓ labeling, markings l and r are captured
by the incidence of the linear edges, and we only mark explicitly the vertices when
they hold the label m.

The multigraph in Fig. 5(a) is an nw-shape. In fact, the matching edges form a
loose matching relation (it is not a matching relation since the two curved edges share
the same starting endpoint), the linear edges conform to a total ordering of the vertices
and labeling conforms to the intended meaning of the labels: only vertices that are
either call or ret are marked with m. Note that, the mark m on vertex v3 denotes that
it is the call endpoint of the matching edge from v3 to v11, and is a placeholder for the
call endpoint of the matching edge that ends onto v17. There is no ambiguity since
when contracting portions of the multigraph we move the canceled endpoints inside
(i.e., below) the curved edge up to the first surviving vertex. In particular, this nw-
shape can be obtained by a contraction from an nw-shape corresponding to a portion

14

v0 v3

m

v5 v6 v11

m

v17

m

(a)

v0 v4 v11

m

v13 v15 v16

(b)

v6

m

v7 v8 v9 v10

m

v11

(c)

v2 v3

m

v4 v5 v6 v11

m

(d)

v2 v3

m

v4 v5 v6

m

v7 v8 v9 v10

m

v11

m

(e)

v6

m

v11

(f)

v2 v6 v11

m

(g)

v2 v6

m

v11

m

(h)

v2 v11

m

(i)

Fig. 5 Examples of multigraphs: (a) sample of nw-shape; (b) labeled multigraph which is not a
nw-shape; (c) nw-shape S1 corresponding to a sub-nested-word of the nested-word in Fig. 3; (d) nw-
shape S2 corresponding to a sub-nested-word of the nested-word in Fig. 3; (e) S3 = merge(S1, S2,→)
where → induces an ordering of the vertices by increasing indices, S3 is fully expanded; (f) S4 =
contract(S1, {v6, v11}); (g) S5 = contract(S2, {v2, v6, v11}); (h) S6 = merge(S4, S5,→{v2,v6,v11})
which can also be obtained as contract(S3, {v2, v6, v11}); (i) S7 = contract(S6, {v2, v11}) which can
also be obtained directly as contract(S3, {v2, v11}).

of the nested-word given in Fig. 3 and this curved edge is representative of the curved
edge from v1 to v17 there.

The multigraph in Fig. 5(b) is not an nw-shape since it has an isolated vertex,
besides this the rest of the graph conforms to our notion of nw-shape.

Formally, nested-word shapes are defined as follows.

Definition 5 (Nested-Word Shapes) A nested-word shape (nw-shape) is a tuple S =
(σ,❀, ℓ, τ), where σ = (V,→,y) is a multigraph such that the following holds:

1. (V,❀) is a line graph, and → is a subset of ❀;

2. ℓ : V 7→ 2{l,r,m};

3. τ : V 7→ {int, call, ret} gives the type of each vertex;

4. y is a loose matching relation w.r.t. ❀;

5. the labeling is consistent, that is:

a. for u→ v, r ∈ ℓ(u) and l ∈ ℓ(v) must hold;
b. if r ∈ ℓ(u), then u→ v for some v;
c. if l ∈ ℓ(v), then u→ v for some u;
d. if τ(u) = call and m ∈ ℓ(u), then uy v for some v;

15

e. if τ(v) = ret and m ∈ ℓ(v), then uy v for some u;
f. if m ∈ ℓ(u), then either τ(u) = call or τ(u) = ret;
g. ℓ(u) 6= ∅ for each u ∈ V .

S is ground if y is also a matching relation, and for any pair u y v, it must hold that
m ∈ ℓ(u) and m ∈ ℓ(v).
The size of S is |V |. �

If the edge relation y of a nw-shape is a matching one, then the underlying
multigraph is indeed a sub-nested-word. Thus we get:

Lemma 1 If S = (σ,❀, ℓ, τ) is a ground nw-shape, then σ is a sub-nested-word.

The three multigraphs from Fig. 5(c–e) (as already informally observed before) are
all nw-shapes according to the above definition, moreover since the curved edges form
their matching relations (there is no overlap of such edges not even at their endpoints)
they are also ground, and is simple to verify that the underlying multigraphs (obtained
by removing the labeling) are indeed sub-nested-words of the nested-word given in
Fig. 3.

Definition 6 (Fully Expanded Nested-Word Shapes) Let S = (σ,❀, ℓ, τ) be an nw-
shape with set of vertices V . A vertex u ∈ V is fully expanded whenever the following
conditions hold:

1. If u is the first vertex in the line graph (V,❀), then

• if τ(u) ∈ {call} then ℓ(u) = {r, m}; otherwise, ℓ(u) = {r}.

2. If u is the last vertex in the line graph (V,❀), then

• if τ(u) ∈ {ret} then ℓ(u) = {l, m}; otherwise, ℓ(u) = {l}.

3. If u is an internal vertex in the line graph (V,❀), then

• if τ(u) ∈ {call, ret} then ℓ(u) = {l, r, m}; otherwise, ℓ(u) = {l, r}

S is a fully expanded nw-shape if all of its vertices are fully expanded. �

The nw-shape from Fig. 5(c), even if it is totally connected, is not fully expanded
since the ret vertex v11 is not matched by a curved edge. The nw-shape from Fig. 5(e)
is instead fully expanded.

Every ground and fully expanded nw-shape has a nested-word as its underlying
multigraph. This result follows directly from two properties of a ground and fully
expanded nw-shape:
1. Matching relation: the edge relation y of a ground nw-shape is a matching

relation (refer to Definition 5), and
2. Line graph: the fulfillment of the condition of being fully expanded results in

the → edge relation forming a line graph with the vertices of the nw-shape (see
Definition 6).

These two characteristics precisely define a nested-word. This assertion is explicitly
formalized in the following lemma.

16

Lemma 2 If S = (σ,❀, ℓ, τ) is a ground and fully expanded nw-shape, then σ is a nested-
word.

The multigraph from Fig. 5(e) is ground and fully expanded as observed before. It
simple to verify that its underlying multigraph indeed forms a nested-word.

4.1 Operations on shapes

In this section, we lay the groundwork for our verification methodology by introducing
two essential operations on nested-word shapes: merge and contraction. We also estab-
lish key properties of these operations, playing a critical role in proving the soundness
of our approach.

Contraction

The contraction operation essentially compresses linearly connected portions of a nw-
shape into single →-edge. This process preserves the labeling of the surviving vertices.
Furthermore, in a contraction some y-edges may have their endpoints adjusted if they
are part of a compressed portion, or they may just disappear if the edge lays entirely
within one such portion. As a result, in the underlying multigraph, the property of
being linearly connected is both preserved in and not a direct consequence of any
contraction.

The multigraph in Fig. 5(f) is the contraction of the one in Fig. 5(c) w.r.t. the set
of vertices {v6, v11}. Note that the entire sequence of linear edges from v6 to v11 has
collapsed into a single linear edge. Additionally, since vertex v10 has been abstracted
away, the incident matching edge has been redirected to v6, which is the closest vertex
to v11 among the surviving ones that are below the original edge. Each surviving
vertex retains the original labeling. Clearly, since v6 is of type call, the graph carries
also the information that the ret endpoint of the original matching edge has been
abstracted away (along with all the underlying portion of the starting nw-shape).
Also, the multigraph in Fig. 5(g) is obtained by contraction, this time w.r.t. the set
of vertices {v2, v6, v11} and from the nw-shape in Fig. 5(d). Observe that here, the
left endpoint of the matching edge from v3 to v11 has been moved to v6 which is not
labeled with m correctly meaning that this is not the matching edge that starts from
v6 but one coming from an outer call vertex.

Notably, both the multigraphs in Fig. 5(f–g) are also nw-shapes. This is not a
coincidence but a property of our notion of contraction as we will state in a lemma
after giving the formal definition of contraction.

Before getting to the formal definition of contraction of a nested-word shape, we
leverage the notion of edge contraction. Given a generic edge relation → on a set of
vertices V , and a subset of vertices U ⊆ V , we define the contraction of → over U ,
denoted→U∈ (U×U), as a new relation on U . This relation connects vertices of U that
are either directly linked by → or indirectly connected through a →-path involving
only vertices outside U . Formally, for any u, v ∈ U , u→U v holds if and only if:

• u→ v, or

17

• there exists a sequence of vertices u1, . . . , um ∈ (V \ U) such that u → u1 →
. . .→ um → v.

Definition 7 (Contraction) Let S = (σ,❀, ℓ, τ) be an nw-shape with σ = (V,→,y), and
V ′ ⊆ V .

Contractability: S is contractable w.r.t. V ′ if all the vertices of S that are not fully expanded
belong to V ′.

Contraction operation: If S is contractable w.r.t. V ′, the contraction of S w.r.t. V ′, denoted
by contract(S, V ′), is the nw-shape (σ′,❀′, ℓ′, τ ′) with σ′ = (V ′,→′,y′):

• ❀
′ is the contraction of ❀ over V ′, i.e., ❀′=❀V ′ ,

• →′ is the contraction of → over V ′, i.e., →′=→V ′ ;
• (x, y) ∈y

′ if there exists uy v such that
– u❀

∗ x❀
∗ y ❀

∗ v;
– if u ∈ V ′ then x = u, otherwise u→U x where U = V ′ ∪ {u};
– if v ∈ V ′ then y = v, otherwise y →U v where U = V ′ ∪ {v}.

Well-definedness: The contraction operation contract(S, V ′) is well-defined if S is con-
tractable w.r.t. V ′. �

In the following, we give some key properties of the contraction operation.
The following two lemmas are a direct consequence of the definitions and the

informal observations given at the beginning of this section.

Lemma 3 Any contraction of an nw-shape is also an nw-shape.

Lemma 4 Let S be an nw-shape, and V be a set of vertices such that S is contractable w.r.t.
V . It holds that S is fully expanded if and only if contract(S, V) is fully expanded.

Another relevant property of nw-shapes is the following. The nw-shape S′ result-
ing from a sequential application of two contractions, first w.r.t. a set V1 and
subsequently w.r.t. V2, applied to an initial shape S, is exclusively determined
by S and V2. For example, the nw-shape in Fig. 5(i) can be obtained either
as contract(contract(S3, {v2, v6, v11}), {v2, v11}) or directly as contract(S3, {v2, v11}),
where S3 is the nw-shape given in Fig. 5(e). This property is formally stated in the
following lemma.

Lemma 5 Let S be an nw-shape, and V1, V2 be two sets of vertices such that S is contractable
w.r.t. V1, and contract(S, V1) is contractable w.r.t. V2. It holds that S is contractable w.r.t.
V2, and contract(contract(S, V1), V2) = contract(S, V2).

Proof Define S1 = contract(S, V1) and S2 = contract(S1, V2). The condition V2 ⊆ V1 is a pre-
requisite for S to be contractable w.r.t. V1 and S1 to be contractable w.r.t. V2. Furthermore,
given that contraction maintains the labeling of surviving vertices unchanged, it follows that

18

S is also contractable with respect to V2. Directly applying the definition of the contraction
operation, we deduce that S2 = contract(S, V2). �

Merge

As its name suggests, the merge operation seamlessly integrates two nested nw-shapes
into a single nw-shape. This unification entails combining the vertices, →-edges, and
y-edges of the two nw-shapes through set union. The vertices’ labels are adjusted in
accordance with the merged edge relations. Notably, not every merge of nw-shapes
yields a valid nw-shapes. To address this limitation, we introduce a definition of merge-

able that precisely captures this condition. We also present fundamental properties
that are essential for the verification methodology outlined in this paper.

Definition 8 (Merge) Let Si = (σi,❀i, ℓi, τi) with σi = (Vi,→i,yi) for i ∈ {1, 2} be two
nw-shapes, and ❀ be such that (V1 ∪ V2,❀) is a line graph.

Mergeability: S1 and S2 are mergeable with respect to ❀ if:

1. ❀1 =❀V1
, and ❀2 =❀V2

;
2. →1,→2 ⊆❀;
3. (→1 ∩ →2) = ∅;
4. y1 ∪ y2 is a loose matching relation w.r.t. ❀;
5. for each u ∈ (V1 ∩ V2), τ1(u) = τ2(u) and (ℓ1(u) ∩ ℓ2(u)) = ∅.

Merge operation: If S1 and S2 are mergeable w.r.t. ❀ then the merge of S1 and S2, denoted
merge(S1, S2,❀), is (σ,❀, ℓ, τ) where σ = (V,→,y) and:

• σ is the union of σ1 and σ2;
• τ(u) = τ1(u) if u ∈ V1, and τ(u) = τ2(u) otherwise;
• ℓ(u) = ℓ1(u) if u ∈ (V1\V2), ℓ(u) = ℓ2(u) if u ∈ (V2\V1), and ℓ(u) = (ℓ1(u)∪ℓ2(u))

otherwise.

Well-definedness: The merge operation merge(S1, S2,❀) is well-defined if S1 and S2 are
mergeable w.r.t. ❀. �

The multigraph given in Fig. 5(e) is the merge of the two nw-shapes given in 5(c–d)
w.r.t. the edge relation given by the union of their respective linear edges. It is simple
to verify that the two starting nw-shapes satisfy the mergeability condition w.r.t. the
mentioned edge relation.

In the following, we highlight some key properties of the merge operation also in
combination with the contraction operation.

If the underlying multigraphs of two nw-shapes are edge-disjoint sub-nested-words
of a given nested-word, then all the criteria of the mergeability definition with respect
to the edge relation inherited by the nested-word are straightforwardly met (see
Definition 8). Therefore, the following lemma holds.

Lemma 6 For i ∈ {1, 2}, let Si be a ground nw-shape where Vi is the set of vertices of its
underlying multigraph σi, and ω be a nested word with set of linear edges →.

If σ1 and σ2 are edge-disjoint sub-nested-words of ω, then merge(S1, S2,→V1∪V2
) is well-

defined.

19

Note that, the multigraphs underlying the two nw-shapes given in 5(c–d) are as
observed before in this paper are sub-nested-words and additionally they are also edge
disjoint. Thus, mergeability in this case could be shown by the using the above lemma.

The next lemma naturally follows from Definition 8 and can be seen again
comparing the three nw-shapes from Fig. 5(c-e).

Lemma 7 Let Si = (σi,❀i, ℓi, τi) for i ∈ {1, 2} be two nw-shapes with set of vertices Vi and
❀ be such that (V1 ∪ V2,❀) is a line graph.

If merge(S1, S2,❀) is well-defined, then denoting merge(S1, S2,❀) = (σ,❀, ℓ, τ), σ is
the union of σ1 and σ2.

The following lemma states a fundamental property of the merge operation: the
merge of two mergeable nw-shapes result in another nw-shape, and this operation
preserves the property of being ground. Again, this lemma can be seen by the three
nw-shapes from Fig. 5(c-e).

Lemma 8 Given two nw-shapes S1 and S2, if they are mergeable w.r.t. ❀, then
merge(S1, S2,❀) is an nw-shape. Furthermore, if S1 and S2 are ground, then also
merge(S1, S2,❀) is ground.

Proof Let S = merge(S1, S2,❀). Denote Si = (σi,❀i, ℓi, τi) with σi = (Vi,→i,yi) for
i ∈ [1, 2]. Additionally, let S = (σ,❀, ℓ, τ), where σ = (V,→,y). We start showing the first
claim of the lemma, namely, S is an nw-shape.

From Definition 8, we deduce that V = (V1 ∪ V2), (V,❀) is a line graph, and →= (→1

∪ →2). As S1 and S2 are mergeable, it follows that →1,→2⊆❀ (as per Part 2 of the merge-
ability definition in Definition 8). Consequently, →⊆❀. Therefore, Part 1 of Definition 5,
which defines nw-shapes, holds for S.

Parts 2 and 3 of Definition 5 clearly follow from the construction of S.
Part 4 of Definition 5 is also satisfied for S. This is a direct consequence of y=y1 ∪ y2

(as dictated by the definition of merge) and Part 4 of Definition 8.
From Part 5 of Definition 8, we observe that τ1(u) = τ2(u) and ℓ1(u)∩ ℓ2(u) = ∅ for each

u ∈ V1 ∩ V2. Additionally, by definition, τ agrees with τ1 and τ2. Furthermore, ℓ agrees with
ℓ1 and ℓ2 on the vertices that are not in common between S1 and S2, and join them on the
remaining ones. Consequently, the consistency of the labeling of S (as defined in Part 5 of
Definition 5) is ensured by the consistency of the labelings of S1 and S2. This concludes the
proof that indeed S is an nw-shape.

To conclude the proof of the lemma, we now prove the second assertion of the lemma
statement, namely, if S1 and S2 are ground, then so is S. To achieve this, we need to prove
two conditions:

1. y is a matching relation, and

2. if uy v, then m ∈ ℓ(u) ∩ ℓ(v) (see Definition 5).

Since we have already shown that S is an nw-shape, we know that y is a loose matching
relation. Thus, our focus is on demonstrating that the edges in y neither share endpoints nor
connect a vertex to itself. As y= (y1 ∪ y2), and by hypothesis yi is a matching relation
for i ∈ [1, 2], the second property naturally holds. The first property could only be violated

20

by two edges, one coming from y1, and the other from y2. However, such a violation is
not possible due to Part 5 of the mergeability definition (Definition 8). According to this
part, vertices common to both S1 and S2 must have disjoint labeling through ℓ1 and ℓ2.
Consequently, a vertex serving as an endpoint for an edge in y1 and another in y2 can be
marked with m only by one of ℓ1 and ℓ2. This would either contradict part 5.d/e of Definition 5
or the assumption that both S1 and S2 are ground. Therefore, S must be ground, and this
concludes the proof of the lemma. �

The merge operation is associative in the following sense. By fixing a relation ❀

of the line graph of the resulting nw-shape, we obtain this nw-shape regardless of the
order in which we merge the initial nw-shapes provided that the merging is carried
out w.r.t. relations that are contractions of ❀. This clearly holds as mergeability
necessitates that the nw-shapes have disjoint edge relations and possess compatible
line graphs and vertex labelings.

Lemma 9 For each i ∈ [1, 3], let Si be an nw-shape with set of vertices Vi. Furthermore, let
❀ be the edge relation such that (V1∪V2∪V3,❀) is a line graph. The following equality holds:

merge
(
merge

(
S1, S2,❀(V1∪V2)

)
, S3,❀

)
= merge

(
S1,merge

(
S2, S3,❀(V2∪V3)

)
,❀

)
,

when all the merge operations involved, on at least one side of the equality, are well-defined.

Proof We only examine the scenario in which all the merge operations on the left-hand side
of the equality are all well-defined. A proof for the converse direction can be achieved by
using similar arguments and is consequently omitted for brevity. We start proving that

1. both the merge operations on the right-hand side of the equality are well-defined,

2. subsequently, we show that the nw-shape SR defined by the expression on the right-end
side of the equality coincides with SL, i.e., the one defined on the left-hand side.

For the proof of the first claim, we focus only on the mergeability of S2 and S3, as
the same arguments apply to both the merge operations. Denote Si = (σi,❀i, ℓi, τi) with

σi = (Vi,→i,yi) for i ∈ [1, 3]. Additionally, consider S12 = merge
(
S1, S2,❀(V1∪V2)

)
, where

S12 = (σ12,❀12, ℓ12, τ12) and σ12 = (V12,→12,y12). Under the assumption that the merge
operations on the left-hand side are well-defined, we have the following properties:

A. ❀1,❀2,❀3 ⊆❀;

B. the linear edges of S12 and S3 are disjoint, i.e., (→12 ∩ →3) = ∅;

C. the union y12 ∪ y3 of the loose matching relations of S12 and S3 is a loose matching
relation w.r.t. ❀;

D. the labelings of S12 and S3 are compatible, i.e., τ12(u) = τ3(u) and ℓ12(u) ∩ ℓ3(u) = ∅
for each u ∈ V12 ∩ V3.

We now provide a rationale for each of the parts of the definition of mergeability (refer to
Definition 8), demonstrating that they hold for S2 and S3 w.r.t. ❀. This will conclude the
proof of the first claim. Part 1 of the definition of mergeability directly follows from the
aforementioned Property A. From Property B above, and the fact that the linear edges of
S12 are defined as →1 ∪ →2 (refer to Definition 8), it follows that →2 and →3 must be
disjoint. Consequently, Part 2 of the mergeability definition also holds. Given that y12=

21

(y1 ∪ y2) by definition (see Definition 8), it follows that (y12 ∪ y3) is (y1 ∪ y2 ∪ y3).
Considering the fact that any subset of a loose matching relation is itself a loose matching
relation, Property C implies that Part 3 of the mergeability definition holds. Furthermore, as
V12 = V1 ∪ V2 by definition (see Definition 8), we get that V2 ∩ V3 ⊆ V12 ∩ V3. Consequently,
leveraging Property D, we conclude that τ2(u) = τ3(u) and ℓ2(u) ∩ ℓ3(u) = ∅ for each
u ∈ V2 ∩ V3. This, in turn, establishes the validity of Part 4 of the mergeability definition,
thereby completing the proof of the first claim.

Now, we proceed to establish the second claim, demonstrating that SL and SR coincide.
To begin, we note that by Lemma 8, SL and SR are nw-shapes. Furthermore, the underlying
multigraphs are obtained by performing set unions on the vertices and the edges of the
multigraphs underlying each nw-shape Si. Consequently, by the associativity of the set union,
we immediately have that those multigraphs coincide. As the labeling is solely determined
by the resulting multigraphs, labeling consistency is also guaranteed between SL and SR.
Lastly, since we use the same final relation ❀ on both sides and we have shown that the first
claim holds, we thus get that SL = SR, thereby concluding the proof of the lemma. �

The following lemma states that in an expression where we compose nw-shapes
by the operations of contraction and merge we can always move the merge operations
outside and achieve an equivalent expression. For example, the nw-shape in Fig. 5(h)
is the result of merging the contraction of the two nw-shapes in Fig. 5(c-d) or by
contracting the merge of the same two nw-shapes.

The intuition behind this lemma is twofold: (1) a merge operation glues two nw-
shapes at vertices that are not fully expanded and (2) a contract operation condenses
connected portions of the nw-shape by abstracting away edges and vertices that are
fully expanded. These characteristics ensure that the mergeability of two nw-shapes
is preserved on the contracted nw-shapes.

Lemma 10 For each i ∈ [1, 2], let Si be an nw-shape with set of vertices Vi, and let Ui ⊆ Vi
be such that Si is contractable w.r.t. Ui. Furthermore, let ❀ be an edge relation such S1 and
S2 are mergeable w.r.t. ❀. It holds that:

merge
(
contract(S1, U1), contract(S2, U2),❀(U1∪U2)

)
= contract

(
merge(S1, S2,❀), U1∪U2

)
,

and all the merge and contraction operations involved are well-defined.

Proof We concentrate specifically on the scenario where all merge and contract operations
on the left-hand side of the equation are well-defined. The proof for the reverse direction can
be established using analogous arguments and we omit it for brevity.

We start examining the expression on the left-hand side of the equality. It is important
to emphasize that Ui must contain all the vertices of Si that have yet to be fully expanded
(see Definition 6).

We recall that the contraction of Si w.r.t. Ui absorbs all the vertices of Si not included
in Ui, which by definition must be fully expanded. In particular, the operation compresses
linearly connected portions of Si into single →-edges without modifying the labeling of the
surviving vertices. During this process, some y-edges may have their endpoints reassigned
if they are part of a compressed portion, or they may vanish if the edge lies entirely within
one such portion.

22

Turning our attention to the expression on the right-hand side of the equality, we merge
S1 and S2 into an nw-shape, say S12, through set union operations on its vertices and edges,
and subsequently adjust the vertex labeling accordingly. Notably, fully expanded vertices
of S1 and S2 remain so in S12. However, more vertices may become fully expanded during
the merge. Nevertheless, those vertices must be contained in U1 ∪ U2 by contractability,
and therefore these newly fully expanded vertices would not be absorbed in the subsequent
contract operation applied to S12.

To complete the proof, we first list three facts easily derived from the definitions provided
earlier in this section. Assuming that Vi is the set of vertices of the sub-nested-word underlying
Si, we have the following:

• Vertices absorbed in the contraction contract(Si, Ui) are all and only those in (Vi \Ui),
all of which need to be fully expanded in Si.

• Vertices that are common to S1 and S2 must be in (U1 ∩ U2). Otherwise S1 and S2
would not be mergeable w.r.t ❀, or either one of them would not be an nw-shape by
containing an isolated vertex.

• A fully expanded vertex in S12 is either fully expanded in S1 or S2 (but never in both),
or it belongs to (U1 ∩U2) (this is the case when it is not fully expanded in both S1 and
S2 and in the merging all the expected incident edges are present either in S1 or S2).

As a consequence of the listed facts, and considering that the vertices in (U1 ∪ U2) are
not deleted in the contraction of S12 w.r.t. (U1 ∪U2), the portions of S12 that are contracted
are all and only those contracted in the separate contractions of Si w.r.t. Ui for i ∈ [1, 2].
This justifies that performing the merge first and a contraction afterward would not change
the final result. �

5 Trees of Nested-Word Shapes

In this section, we definemerge-and-contract trees, full binary labeled trees where every
node carries a label corresponding to a nested-word shape. The name comes from the
property that the label of each node is related with those of its children by merge and
contract operations. The entire tree serves as a representation for a complete nested-
word or a fragment thereof. We also demonstrate that each merge-and-contract tree
encodes not only the multigraph itself but also a tree decomposition for it.

Merge-and-contract trees assume a central role in the next section, as we encode
them within symbolic tree automata. This encoding can then be seamlessly translated
into fixed-point algorithms.

We define merge-and-contract trees by applying local constraints to each triple
formed by the nw-shapes labeling a node and those labeling its two children. The set
of all these triples that satisfy these constraints is characterized as follows.

Definition 9 (Merge-and-Contract Triples) For a positive natural number k, a triple
(S1, S2, S3) of nw-shapes is a k merge-and-contract triple if each of S1, S2 and S3 has at most
k vertices, and there exists an edge relation ❀ such that:

S3 = contract
(
merge(S1, S2,❀), V3

)
,

where V3 is the set of vertices of S3 and the merge and the contraction operations are
well-defined. �

23

n0

v0 v3

m

v11

m

v17

m

n1

v0 v3 v11 v16

m

v17

m

n2

v3

m

v6

m

v11

m

n3

v0 v1

m

v2 v3 v16v17

m

n4

v11v12

m

v13v14v15v16

m

n5

v3

m

v4 v5 v6 v11

m

n6

v6

m

v7 v8 v9 v10

m

v11

Fig. 6 Example of a merge-and-contract tree for the nested-word illustrated in Fig. 3.

A merge-and-contract tree is formally defined as follows.

Definition 10 (Merge-and-Contract Trees) For a positive natural number k, a k merge-
and-contract tree is a full binary Γ-tree T = (T, λ), where Γ is the set of all nw-shapes with
at most k vertices, such that the following conditions hold:

• if t is a leaf, then λ(t) is ground;

• if t is an internal node, then (λ(t0), λ(t1), λ(t)) is a k merge-and-contract triple.

Furthermore, T is fully expanded if λ(ǫ) is a fully expanded nw-shape. �

Example 3 Fig. 6 gives a 6 merge-and-contract tree Tex . In fact, all the multigraphs labeling
the leaves are ground nw-shapes. The underlying multigraphs are indeed fragments of the
nested-word given in Fig. 3. The multigraphs labeling the internal nodes can be obtained by
merging and then contracting the nw-shapes of the two children. The merge operations are
all w.r.t. the vertex ordering given by increasing indices, and the contractions are w.r.t. the
set of vertices of the considered internal node. Note that the nw-shape labeling the root is
fully expanded. Moreover, if we remove the edges from the multigraphs labeling the internal
nodes and the vertex labeling from all the multigraphs, the resulting tree is exactly the strict
augmented tree decomposition of the nested-word from Fig. 3 that we have illustrated in
Fig. 4. As we prove later in this section, we can use merge-and-contract trees to generate tree
decompositions of any nested-word. �

For the rest of this section, we fix a merge-and-contract tree denoted as T = (T, λ),
where each node t is associated with λ(t) = (σt,❀t, ℓt τt) where σt = (Vt,→t,yt).
Moreover, we assume that the vertices over all the nw-shapes labeling its nodes have
the same name if and only if they actually represent the same vertex: for each t1, t2 ∈ T ,
v1 ∈ Vt1 and v2 ∈ Vt2 , v1 6= v2 unless there is a t′ that is a common ancestor of t1 and
t2 such that v1 (and thus v2) belongs to V

t for each node t along the paths from t1 to

24

t′ and from t2 to t′. Note that this assumption is without loss of generality since we
can always impose it by a simple vertex renaming.

Definition 11 (Merge Trees) For a merge-and-contract tree T = (T, λ) and a vertex t of
T , we define λmerge(t) as the nw-shape obtained only by merging the nw-shapes labeling its
children, that is:

• if t is a leaf, then λmerge(t) = λ(t);

• otherwise, λmerge(t) = merge
(
λmerge(t0), λmerge(t1),❀

)
, where ❀ is such that

❀Vt0∪Vt1
is the edge relation used in the merge of the merge-and-contract triple

(λ(t0), λ(t1), λ(t)).

We define G(T) as the multigraph labeling the root of T , i.e., λmerge(ǫ). �

Note that λmerge is always defined since mergeability is guaranteed by the fact that
the only vertices belonging to both λmerge(t0) and λmerge(t1) also belong to λ(t0) and
λ(t1).

For the merge-and-contract tree Tex given in Fig. 6, denoting by ω the nested-
word from Fig. 3, λmerge labels the internal nodes as follows: the nw-shape labeling
node n2 corresponds to the sub-nested-word of ω from v3 through v11, the nw-shape
labeling n1 corresponds to the remaining part of ω, and the one labeling the root n0
corresponds to the entire ω. In particular, G(Tex) is precisely ω.

The following lemma establishes a connection through the contraction operation
between the labeling of the merge-and-contract trees and λmerge . It is essentially a con-
sequence of the properties of the merge and contraction operations we have established
in Section 4.

Lemma 11 Given a merge-and-contract tree T = (T, λ), for each internal node t ∈ T ,
λ(t) = contract(λmerge(t), Vt) where Vt is the set of vertices of λ(t).

Proof To prove the lemma, we proceed by structural induction in a bottom-up fashion on
the tree. The base case arises when t is a leaf of T . By definition, λ(t) equals λmerge(t) and
thus we need to prove that λmerge(t) = contract(λmerge(t), Vt). Observe that both λmerge(t)
and λ(t) share identical vertices, namely Vt. Consequently, the application of contraction
has no effect, leaving the entire shape unchanged. Thus, the equality between λmerge(t) and
contract(λmerge(t)) holds.

For the induction step, we need to prove the equality λ(t.i) = contract(λmerge(t.i), Vt.i).
The formal steps are given below, followed by explanatory comments:

λ(t) = contract (merge(λ(t0), λ(t1),❀t), Vt) (A)

= contract
(
merge

(
contract(λmerge(t0), Vt0), contract(λ

merge(t1), Vt1),❀t

)
, Vt

)
(B)

= contract
(
contract

(
merge(λmerge(t0), λmerge(t1),❀t), Vt0 ∪ Vt1

)
, Vt

)
(C)

= contract
(
contract

(
λ
merge(t), Vt0 ∪ Vt1

)
, Vt

)
(D)

= contract
(
λ
merge(t), Vt

)
. (E)

We provide a rationale for the derivation of the above steps:

25

• Equation (A) by the definition of λ.

• Equation (B) by the induction hypothesis.

• Equation (C) by Lemma 10.

• Equation (D) by definition of λmerge .

• Equation (E) by Lemma 5.

Equation (E) provides the desired result, allowing us to conclude the proof. �

As an example of application of the above lemma, consider again the merge-and-
contract tree Tex from Fig. 6. It is simple to verify that the nw-shape S labeling node
n2 is the contraction of the nw-shape λmerge(n2) over the set of vertices of S.

Earlier in this section, we have already observed that G(Tex) is a nested-word and
that the nw-shape labeling the root of Tex is fully expanded. This indeed is not just a
coincidence as stated by the following lemma.

Lemma 12 Given a merge-and-contract tree T = (T, λ), G(T) is a sub-nested-word.
Moreover, if λ(ǫ) is a fully expanded nested-word shape, then G(T) is a nested-word.

Proof By inductively applying Lemma 8, bottom up from the leaves, we get that λmerge(ǫ)
is a ground nw-shape. Therefore, directly from the definition of G(T) and Lemma 1 we have
that G(T) is a sub-nested-word.

From Lemma 4 and Lemma 11, we get that λmerge(ǫ) is a fully expanded nw-shape. From
the proof of the first part of this lemma, we know that λmerge(ǫ) is also ground. Thus, from
the definition of G(T) and Lemma 2, we get that G(T) is a nested-word. �

As noted at the end of Example 3, the merge-and-contract tree from Fig 6 corre-
sponds to the strict augmented tree decomposition given in Fig 4(b). In general, it is
always possible to construct a merge-and-contract tree corresponding to a given strict
augmented tree decomposition as stated in the following lemma.

Lemma 13 For any augmented strict tree decomposition of a nested-word ω = (V,→,y) of
width k, there exists a k+1 merge-and-contract tree T = (T, λ) such that the graph G(T) is ω.

Proof Let D = (T, {ωt}t∈T) be an augmented strict tree decomposition of ω of width k and
denote ωt = (V ω

t ,→
ω
t ,y

ω
t).

We define T as the Γ-tree (T, λ), where Γ is the set of all nw-shapes with at most k + 1
vertices. The definition of λ is as follows:

• if t is a leaf of T , then λ(t) = (σt,❀t, ℓt, τt) where:

– σt = ωt and ❀t =→ω
t ,

– τt is such that for every u ∈ V ω
t :

∗ τt(u) = call if there exists a vertex v such that uy v;
∗ τt(u) = ret if there exists a vertex v such that v y u;
∗ τt(u) = int in all the other cases.

– for every u ∈ V ω
t , ℓt(u) is the smallest set obeying to the following conditions:

26

∗ r ∈ ℓt(u) if there exists a vertex v such that u→ω
t v;

∗ l ∈ ℓt(u) if there exists a vertex v such that v →ω
t u;

∗ m ∈ ℓt(u) if there exists a vertex v such that uy
ω
t v or v y

ω
t u.

• if t is an internal node of T , then λ(t) = contract(merge(λ(t0), λ(t1),→Vt0∪Vt1
), V ω

t)
(recall that for t ∈ T , Vt denotes the set of vertices of λ(t)).

We now prove that T is well-defined. To see this we show by structural induction the
following stronger claim: for each t ∈ T ,

1. the subtree Tt of T rooted at t is a merge-and-contract tree, and

2. the multigraph underlying λmerge(t) is the sub-nested-word of ω obtained by the union
of the sub-nested-words labeling the leaves of Tt.

The base case, i.e., when t is a leaf, is straightforward: a single node labeled with a ground
nw-shape is a merge-and-contract tree by definition, and λ labels leaves with sub-nested-words
of ω.

For the induction step, let t ∈ T be an internal node. Since by definition of strict
augmented tree decomposition, T is a full binary tree, then t0, t1 ∈ T .

By part (2) of the induction hypothesis, λmerge(t.i) is the union of the sub-nested-words
labeling the leaves of the subtree rooted at t.i, for i ∈ [1, 2]. Thus, λmerge(t0) and λmerge(t1)
are edge-disjoint. Thus by Lemma 6, denoting Ut = ∪t′∈Tt

V ω
t′ , i.e., the union of the set

of vertices of all the sub-nested-words labeling the nodes in the subtree Tt, we get that
λ′(t) = merge(λmerge(t0), λmerge(t1),→Ut

) is well-defined and by Lemma 7, it is the union
of the sub-nested-words labeling the leaves of the subtree Tt.

For i ∈ [1, 2], by part (1) of the induction hypothesis we get that the tree rooted at t.i is a
merge-and-contract tree. Thus, by Lemma 11, contract(λmerge(ti), V ω

ti) is well-defined. There-
fore, since we have argued above that merge(λmerge(t0), λmerge(t1),→Ut

) is well-defined and
→V ω

t0∪V ω
t1
⊆→Ut

(recall that V ω
t0 ∪ V ω

t1 ⊆ Ut by definition of Ut), by Lemma 10, we get

contract(merge(λmerge(t0), λmerge(t1),→Ut
), V ω

t0 ∪ V ω
t1)

= merge(contract(λmerge(t0), V ω
t0), contract(λ

merge(t1), V ω
t1),→V ω

t0∪V ω
t1
).

Again, by Lemma 11, we also get that λ(t.i) = contract(λmerge(t), V ω
t.i) for i ∈ [1, 2], and

then by applying also the definition of λ′(t), from the above equality we get:

contract(λ′(t), V ω
t0 ∪ V ω

t1) = merge(λ(t0), λ(t1),→V ω
t0∪V ω

t1
). (1)

Now we observe that V ω
t contains all the vertices of (V ω

t0∪V
ω
t1) that are not fully expanded

in λ′(t). In fact, assume by contradiction the existence of a not fully expanded vertex v

belonging to (V ω
t0∪V

ω
t1) that does not belong to V ω

t . Since v is not fully expanded, there must
be an edge of ω that is not covered by any of the multigraphs labeling the leaves of the subtree
rooted at t. Thus, this edge must be covered by a multigraph of one of the remaining leaves,
and vertex v must be in the bag of such a leaf. However, this would contradict the property
of tree decompositions that a vertex must be in all the bags along any path connecting two
nodes labeled with two bags containing it. Hence, V ω

t must indeed contain all the vertices of
Ut that are not fully expanded. Therefore, λ′(t) is contractable w.r.t. V ω

t .
Observe that since D is strict, we get that V ω

t ⊆ V ω
t0 ∪ V ω

t1 must hold. By Lemma 5, we
have:

contract(λ′(t), V ω
t) = contract(contract(λ′(t), V ω

t0 ∪ V ω
t1), V

ω
t).

Therefore, from equation 1 we also get that contract(merge(λ(t0), λ(t1),→V ω
t0∪V ω

t1
), V ω

t) is
well-defined, but this is exactly λ(t). Therefore, this conclude the induction for part (1) of
our claim, that is, that the subtree rooted at t is a merge-and-contract tree.

To conclude the proof of our claim, we just observe that since we have just shown that
the subtree rooted at t is a merge-and-contract tree, we get that λmerge coincides with λ′

27

and thus the induction step of part (2) of our claim holds, and therefore T is well-defined
and is a k + 1 merge-and-contract tree (by definition, for each node of T , the set of vertices
of the nw-shape associated in T and of the multigraph associated in D coincide).

By definition, G(T) is λmerge(ǫ). Thus, by part (2) of the above claim, G(T) is exactly
ω, which concludes the proof of the lemma. �

From Theorem 2, for each nested word there is a strict augmented tree decom-
position of width 2. From Lemma 13, each nested word is encoded by at least a 3
merge-and-contract tree. Conversely, from Lemma 12 each merge-and-contract tree
whose root is labeled with a fully expanded nw-shape encodes a nested word. Thus,
the following theorem holds:

Theorem 3 For each nested-word ω and k ≥ 3, there exists a k fully expanded merge-and-
contract tree T = (T, λ) such that G(T) is ω.

6 Program Verification Methodology

In this section, we delineate our verification methodology for (sequential) programs,
with a particular focus on tackling the assertion checking problem introduced in
Section 2.

In Section 6.1, we give an extension of multigraphs to represent program com-
putations. Specifically, we utilize program nested-words that are nested-words where
nodes are labeled with a valuation of program variables and program counters. The
linear edges of these nested-words signify consecutive program configurations, provid-
ing insights into the interrelation of data annotated at vertices. Meanwhile, the call
stack is conventionally captured by nesting edges. We conclude the section by formally
asserting that solving the assertion-checking problem for the given class of programs is
tantamount to verifying the existence of a program nested-word ending with a vertex
whose label unequivocally confirms the failure of a program assertion.

In Section 6.2, we revisit a recently introduced type of tree automata known as
symbolic data-tree automata. In Section 6.3, this class proves instrumental in encoding
program nested-words, employing a decomposition based on merge-and-contract trees
as introduced in Section 5. The overall reduction allows us to reduce the assertion
checking problem to checking the emptiness problem for symbolic data-tree automata,
that in turn, can be reduced to the satisfiability problem of constrained Horn clauses,
for which well-performing tools exist.

6.1 Multigraph Data Structures for Program Computations

In our methodology, we employ an extended form of multigraphs to represent program
computations. Each node within the multigraph is annotated with an evaluation of a
data signature. Specifically, in the context of modeling the executions of a program P ,
we consider nested-words with vertices labeled with an evaluation of the data signature
SP .

Data-Multigraphs. A data-multigraph with data signature S, called an S-
multigraph, is formally defined as a pair (G,λ), where G is a multigraph with a set of

28

v0V : v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

0PC :

λ :
[

x :1
y :∗

]

1 3 4

[

x :1
y :1

]

8 9 A

[

x :1
y :0

]

8 B C C 5 6

[

x :1
y :0

]

8 B C 7 2

Fig. 7 Program nested-word of a run of the program in Fig. 2.

vertices V , and λ : V 7→ E(S) is a labeling function that assigns a valuation of S to
each node v ∈ V . To simplify the notation, we denote the value of a field id associ-
ated with a multigraph vertex v by v.id , when the function λ is clear in the context.
Moreover, when (G,λ) takes the form of a binary tree, we call it a data-tree or S-tree.

Program nested-words

We aim to examine program computations by utilizing their behavior graphs—finite
graphs that intricately represent the control-flow structure through carefully defined
edges. Specifically, we adopt nested-words as our behavior graphs, augmenting them
with annotations for the program counter (pc) and variable valuations in each state,
i.e., an evaluation of SP . These augmented nested-words are denoted as program

nested-words. They serve as a comprehensive representation, capturing both the
control flow and variable states within the program computations.

Example 4 Fig. 7 gives a visual representation, as a behavior graph, of the computation of
the program illustrated in Fig. 2 under the initial condition x = 1. The graph is essentially a
nested-word where the vertices v0, . . . , v17 are labeled with their respective program counters
(pc) derived from the program. Additionally, the vertices of the graph are labeled with variable
valuations at the beginning and at each program counter following an assignment. The →-
edges represent the linear progression of the program states along the computation, thereby
capturing the transitions within the computation. Meanwhile, the y-edges connect a vertex
corresponding to a procedure call to the vertex corresponding to the statement that follows
the call in the current procedure – i.e., the point of execution after returning from the call
(return location). Consider for example v1 y v17: v1 corresponds to the state preceding the
call to the boo procedure from the main function (with pc 1), and v17 corresponds to the
state after returning from this call (with pc 2). Additionally, there is the transition v1 → v2,
where v2 corresponds to the beginning of the first activation of boo (with pc 3). �

Below, we give a logical characterization of program nested-words, by using the
program template formulas introduced in Section 2.1. For clarity of presentation, we
make the assumption that all the procedure calls in the computations are returned.
It is worth noting that this assumption is without loss of generality, as we can always
append a possibly empty sequence of transitions. These additional transitions, being
non-actual program transitions, can be identified as such. This ensures the matching
of all pending calls in the call stack.

Formally, we have:

29

Definition 12 (Program Nested-Words) A program nested-word of a program P is a
pair (ω, λ) where:

• ω = (V,→,y) is a nested-word, with V = {v0, . . . , vn} and vi−1 → vi for each i ∈ [1, n];

• λ : V 7→ E(SP) is a labeling function assigning a valuation of S to each vertex in V ,
where InitP (λ(v0)) holds true, and for every u, v, x ∈ V :

– if u→ v, then TransP (λ(u), λ(v)) holds true;
– if uy v, then CallRetP (λ(u), λ(v)) holds true;
– if λ(u).pc ∈ CallP , then there exists y ∈ V such that uy y;
– if λ(v).pc ∈ Ret , then there is y ∈ V such that y y v. �

Bridging Executions and Program Nested-Words: Consider a computation π =
C0C1 . . . Cn of program P , where Ci = 〈νi, pci,St i〉 for every i ∈ [0, n]. For each
i ∈ [0, n] with pci ∈ CallP , we define a notion ofmatching between indices. Specifically,
we say that index i matches index j in π if j is the smallest index greater than i such
that Stj = St i. We define NW (π) as the pair (ω, λ) where ω = ({v0, . . . , vn},→,y)
is a nested-word satisfying the following conditions:
1. vi−1 → vi for i ∈ [1, n],
2. vi y vj if and only if i matches j in π, and
3. λ(vi).state = νi and λ(vi).pc = pci, for every i ∈ [0, n].

It is straightforward to demonstrate that NW (π) is indeed a program nested-word for
program P .

Conversely, consider a program nested-word pnw = (ω, λ) for P , where {v0, . . . , vn}
is the set of vertices in ω such that vi−1 → vi for i ∈ [1, n]. We denote
by RUN (pnw) the sequence of configurations C0C1 . . . Cn, where denoting Ci =
〈λ(vi).state, λ(vi).pc,St i〉, St0 is the empty stack, and for i ∈ [1, n]:
1. if λ(vi−1).pc ∈ CallP , then St i = (λ(vi−1).pc) · St i−1 (procedure call);
2. if vj y vi for some j, then St i−1 = (λ(vj).pc) · St i (return from a call);
3. otherwise, St i = St i−1 (internal move).

In this case as well, it is evident that RUN (pnw) constitutes a valid computation of
program P .

Thus the following holds:

Theorem 4 Given a program P , there exists a one-to-one mapping between its computations
and the program nested-words of P .

The above theorem enables us to explore program nested-words for determining
the existence of an error computation. Specifically, for a program nested-word pnw =
(ω, λ) of P , we say that it witnesses the failure of an assertion if its corresponding
computation of P is an error one. Thus, as corollary of the above theorem we get:

Theorem 5 For a given a program P , P has an error computation if and only if there exists
a program nested-word of P that witnesses the failure of an assertion.

30

6.2 Symbolic Data-Tree Automata

In this section, we define a new class of tree automata called symbolic data-tree

automata. They generalize traditional bottom-up finite tree automata as they work
with data trees. Furthermore, they are symbolic because the alphabet and set of states
are defined using evaluations of data signatures, and its transition function is defined
through constraints involving states and alphabet.

Definition 13 A symbolic data-tree automaton equipped with the data logic D, denoted
as Sdta, A is a quadruple (SΣ,SQ, ψ, ψF) where:

• SΣ is the alphabet data signature defining the alphabet Σ = E(SΣ) labeling the input
trees;

• SQ is the state data signature defining the set of states Q = E(SQ); Q is extended to

include nil for missing child nodes, forming Q̂ = Q ∪ {nil}.

• ψ(ql, qr, val , q) denotes a D-formula involving the free variables ql, qr of type Q̂, q of
type Q, and val of type SΣ. This formula represents the transition function of A;

• ψF (q) is a D-formula on the free variable q of type SQdefining the set of final states
F ⊆ Q, i.e., the set consisting of all elements q ∈ Q such that ψF (q) holds to true.

A binary SΣ-tree (T, λ) is accepted by A if there exists a total function π : T 7→ Q, known
as a run, such that the following conditions hold:

• ψF
(
π(ǫ)

)
holds; and

• for all nodes t ∈ T , ψ
(
q1, q2, λ(t), π(t)

)
holds, where for all j ∈ [1, 2]: qj is π(t .j) if

t .j ∈ T , otherwise nil.

The language of A, denoted as L(A), is the set of all accepted SΣ-trees. We recover
standard tree automata when both data signatures SΣ and SQ are enumerations. In that
case, we call A an enumeration tree automaton and we denote it as (Σ, Q, F,∆), where
Σ = L(SΣ), Q = L(SQ), and so on. �

The emptiness problem for Sdtas asks to determine whether the language L(A)
of a given Sdta A is empty. The following results is a simple generalization of the
analogous result for binary Sdtas presented in [3].

Theorem 6 (Emptiness Problem) The emptiness problem for Sdtas is undecidable and
can be effectively reduced in linear time to the satisfiability problem of a system of constrained
Horn clauses.

6.3 Symbolic Data-Tree Automata for Nested-Word

Decompositions

The previous sections provide the foundational elements for our methodology of pro-
gram analysis through the tree decomposition of (program) nested-words. Here, we
refine the verification approach described in Section 6.1. Rather than conducting an
exhaustive examination of each nested-word against its entire underlying structure,
a process demanding unbounded memory, we propose a more efficient method, that

31

ultimately uses CHC solvers to perform the analysis. Our proposed approach involves
conducting verification by examining distinct parts of the computation incremen-
tally, leveraging the merge-and-contract tree associated with an augmented strict tree
decomposition of the underlying nested-word. This offers a key advantage: we keep
track of a bounded number of program variable evaluations at each step. This reduces
the memory footprint required by our methodology, facilitating a more efficient and
streamlined program analysis.

To accomplish this, we employ the symbolic data-tree automata (Sdtas) intro-
duced in Section 6.2. Sdtas serve as a powerful tool for systematically verifying all
merge-and-contract trees extended to program nested-words that define the language
of program nested-words failing any program assertion. Checking the emptiness of
the constructed Sdta gives a way to validate the correctness of the program under
consideration via CHC satisfiability. Given that the chain of reductions is amenable
to automation, our proposed approach establishes an automatic methodology for the
analysis of sequential recursive programs.

We now give a reduction from the assertion checking problem to the emptiness
problem for Sdtas.

A variant of merge-and-contract triples

We adopt a variant of the merge-and-contract triples to define our encoding into
Sdtas. When defining merge-and-contract trees, we assigned the same names to
vertices in the nw-shapes as their counterparts in the resulting multigraph G(T).
While this facilitated identifying identical vertices across different nw-shapes, par-
ticularly during merge operations, it incidentally creates an unbounded set of
merge-and-contract triples despite a constant parameter k.

To address this issue, we propose decoupling vertices from their names. Each nw-
shape now uses the same fixed set of k names, but we introduce mappings γi specifically
for the first two shapes in each triple. These mappings indicate, for each vertex a in the
first two nw-shapes, which vertex it corresponds to in the third nw-shape. Crucially,
this approach ensures the set of valid triples to be bounded regardless of vertex names.

Formally, a triple is represented as ((S1, γ1), (S2, γ2), S3), where:
• each nw-shape Si has vertex set Vi ⊆ {v1, v2, . . . , vk}, for i ∈ [1, 3];
• γi : Vi 7→ V3, is a partial map indicating the corresponding vertex γi(v) in S3 for
vertex v in Si, for every i ∈ [1, 2].

By applying vertex renaming aligned with the γi maps and adhering to merge and
contract definitions, we define the set of all valid triples as MCT k.

The reduction to the Sdta emptiness

In this section, given a program P and a bound k > 0, we construct an Sdta AP,k

that accepts merge-and-contract trees which correspond to executions of P ending into
a configuration that violates an assertion. According to the results we have shown,
this amounts to reducing the assertion violation problem for sequential programs to
checking the emptiness for AP,k whenever k ≥ 3 (due to Theorem 1).

The Sdta AP,k is (SΣ
P,k,S

Q
P,k, ψP,k, ψ

F
P,k) whose components are defined as follows.

32

AP,k accepts SΣ
P,k-labeled trees. Denote by Vk = {v1, v2, . . . , vk} a set of k vertices.

The fields of SΣ
P,k are:

Shape: An enumerated field shape ranging over Shapesk, the set of all possible nw-
shapes over a subset of vertices from Vk.

Program state tracker: For each vi ∈ Vk, a field statei of type SP (see Section 2)
to track the valuation of program variables and the program counter associated
with the vertex vi.

The state data signature SQ
P,k coincides with the alphabet data signature SΣ

P,k.
Indeed, the state of the automaton just stores the label of the current input node.

In order to define ψP,k, we first introduce the following auxiliary formula
VarsConsistent(S, state1, . . . , statek), where S = (V ′,→,y) is an nw-shape in
Shapesk and hence V ′ ⊆ Vk:

∧

vi→vj

TransP (statei, statej) ∧
∧

viyvj

CallRetP (statei, statej).

The transition predicate ψP,k can now be defined as:

ψP,k(ql, qr, val , q)
def

=

(

(q = val) ∧
(

ψleaf (ql, qr, val , q) ∨ ψint(ql, qr, val , q)
)

)

where:
ψleaf (ql, qr, val , q) is a formula that evaluates to true on all leaves, i.e., nodes where

both of its children are nil, and if its associated nw-shape is ground and has size
at most k while being data consistent, as defined below:

(ql = nil) ∧ (qr = nil)

∧

(

∨

S∈Groundk

(

q.shape = S ∧ VarsConsistent(S, q.state1, . . . , q.statek)
)

)

where Groundk is the subset of all the ground nw-shapes from Shapesk.

33

ψint(ql, qr, val , q) is a formula designed for internal nodes, wherein the nw-shape of
its label, combined with those extracted from its children, constitute merge-and-
contract triples. Furthermore, it ensures that vertices shared among the involved
nw-shapes have identical associated data, as specified below:

(ql 6= nil) ∧ (qr 6= nil)

∧

(

∨

((S1,γ1),(S2,γ2),S3)∈MCTk

(

ql.shape = S1 ∧ qr.shape = S2 ∧ q.shape = S3

∧
∧

vj=γ1(vi)

(ql.statei = q.statej)

∧
∧

vj=γ2(vi)

(qr.statei = q.statej)
)

)

Finally, let ψF
P,k(q) be defined as ErrorShape(q), where ErrorShape(q) yields true

if and only if:
• q.shape represents a fully expanded nested-word shape, and
• if vi1 and vi2 correspond to the initial and final vertices of q.shape according to
the linear ordering induced by the →-edges of q.shape, then both InitP (q.statei1)
and AssertionFailP (q.statei2) must evaluate to true.

We now conclude the section with the main result. By induction, it is direct to
verify that AP,k essentially checks the following:

• the tree obtained from an accepted tree by retaining only the nw-shapes of its
labeling is indeed a merge-and-contract tree;

• the nw-shape labeling the root is fully expanded (checked by the acceptance
condition ψF

P,k), and therefore the tree defines a nested-word (by Lemma 12);
• the labeling given by the program state tracker field along with the above nested-
word forms a program nested-word of P ;

• such a program nested-word indeed witnesses the failure of an assertion (checked
by the acceptance condition ψF

P,k).

The size of AP,k depends essentially on the length of the formulas ψP,k and ψF
P,k.

The first formula is linear in the size of P and in 2O(k log k), where the logarithmic term
arises from the enumeration of the mappings γ1, γ2 within the merge-and-contract
triples. The second one is linear in the size of P and in k. Thus, overall the size of
AP,k is linear in the size of P and exponential in k log k. We recall that for sequential
programs it suffices to pick k = 3. Therefore, by Theorem 5 we get the following:

Theorem 7 Let P be a program and k ≥ 3. It holds that: L(AP,k) 6= ∅ if and only if there
is a computation of P that violates an assertion. Moreover, the size of AP,k is linear in the
size of P and exponential in k log k.

34

Shared Var x;
Global Var y;

thread p1 begin
0: assume(y=1 || y=2);
1: x := y;
2: call boo1;
3: return;

end

thread p2 begin
4: call boo2;
5: return;

end

procedure boo1 begin
6: call foo;
7: assert(y=1);
8: call foo;
9: return;

end

procedure boo2 begin
A: call foo;
B: return;

end

procedure foo begin
C: y := x;
D: if (y > 0) then
E: y := y − 1;
F: x := y;
G: call foo;
H: else skip; fi
I: return;

end

Fig. 8 A sample concurrent program.

7 Extension to Concurrent Programs

The verification methodology we have introduced in the previous sections, built on the
principle of exploring program computations through behavioral graph tree decompo-
sitions, is well-suited for sequential programs with recursive procedure calls. In this
section, we demonstrate how this foundational principle can be exploited also for the
verification of concurrent programs by extending our methodology to this class of
programs. We provide sufficient detail to guide further elaboration.

We begin by presenting the class of concurrent programs and its formal semantics.
Next, we introduce the class of behaviour graphs specifically designed for this program
category. We then delve into the appropriate shape characteristics for these behaviour
graphs, analyzing the concepts of merge and contraction operations on these shapes.
Notably, these definitions share significant overlap with those established for sequen-
tial programs. The remaining parts follow a similar structure as those for sequential
programs and will be discussed briefly.

Concurrent programs

Concurrent programs consist of a finite number of threads, each defined by a sequential
program. These threads execute in parallel, potentially overlapping in their execu-
tion, and communicate through a finite number of shared variables according to the
Sequential Consistency memory model (SC) [18]. It is assumed that the global vari-
ables of each thread have names distinct from the shared variables. In addition to the
statements presented in Fig. 1, each thread incorporates two new types of statements,
expressed as:

g := s | s := g.

The first statement represents the assignment of a shared variable s into a global
variable g, referred to as a read operation. The second statement, is a write operation,
and involves the assignment of a global variable g into a shared variable s. These
statements are unique in that they are the only ones involving both global and shared
variables. The semantics of concurrent programs can thus be obtained by that of
the sequential threads, and the notion of computation is obtained by interleaving
the computations of the component threads. Each maximal sequence of consecutive
statements of a single thread is called a context.

35

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

0 1 2 6 C D E F G C D H I I 7 8 C D I 9 3

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13

4 A C D E F G C D H I I B 5

m0

x :∗
y1 :2
y2 :∗

x :2
y1 :2
y2 :∗

m1 m2

x :1
y1 :1
y2 :∗

m3

x :1
y1 :1
y2 :1

m4

x :0
y1 :1
y2 :0

m5

x :0
y1 :0
y2 :0

m6 m7

thread p1

thread p2

Shared memory accesses

Fig. 9 The concurrent nested-word corresponding to a run of the program in Fig. 8.

Fig. 8 illustrates an example of a concurrent program with two threads p1 and
p2. The threads share a variable x and each of them has a private copy of the global
variable y, denoted by y1 and y2 respectively. The main procedure of each thread
is denoted by the keyword thread. A possible execution π starts in a state where
y1 = 2 holds (in the execution that we are going to describe, the starting value of
the other two variables is irrelevant). Then, thread p1 executes its statements up to
the assert statement at program counter 7. Note that the conditions of the assume

statement at program counter 0 and of the assert statement at program counter 7
are fulfilled. Moreover, at the end of this first context, variables x and y1 both evaluate
to 1. Then, the control passes to thread p2 that starts executing its statements up to
the assignment of the shared variable at program counter F. Note that y2 is assigned
with x that evaluates 1 at program counter C and therefore the condition at the
next if statement holds. Moreover, y2 gets decremented and the resulting value is
assigned back to x, which thus evaluates to 0 at the end of this context. The rest of
the computation contains one more context for each thread. In particular, thread p1
resumes from the call to foo at program counter G. The call starts by assigning y1
with x and thus the condition at the following if statement this time does not hold,
which causes exiting immediately from this call, from the previous call to the same
procedure, and from the call to boo1, going back up to the return statement of the
main procedure. Similarly, thread p2 also concludes all the pending calls up to the
return statement of the main procedure.

36

Behavior graphs for concurrent programs

A natural graph representation for modeling the computations of concurrent programs
is as follows. The behavior of each thread is modeled with a nested-word, while the
shared memory’s behavior is represented by a line graph capturing the sequence of
memory operations, where each vertex represents a unique read or write operation.
Vertices of the nested-words are conventionally labeled with a program counter and
a valuation of the global variables. In contrast, memory vertices are labeled with a
valuation of the shared variables. A vertex of a nested-word whose local transition
involves “reading” a shared variable is connected through a memory edge from the
memory vertex representing that operation. The direction of this edge is reversed if
the vertex “writes” to a shared variable. Since each memory vertex v corresponds
to exactly one memory operation, v has exactly one memory edge incident on it.
Importantly, memory edges do not cross w.r.t. temporal events (as we assume SC).
We call these behavior graphs concurrent nested-words (cnw).

An example of a concurrent nested-word is shown in Fig. 9. Note that this is
the concurrent nested word corresponding to the computation π described above in
this section. We extend the notation used for nested-words by adding gray arrows to
denote memory edges. For convenience, the evaluations of all the variables are given
all together and label the vertices of the memory portion of the graph. As usual, we
omit them when none of the variables changes its value.

Concurrent nested-word shapes along with merge and contract operations

Concurrent nested-word shapes provide a mechanism for creating natural summaries
that effectively capture the inherent composition of nw-shapes. A concurrent nw-shape

(cnw-shape for short) is formed by a distinct nw-shape for each nested-word compo-
nent, along with an additional memory-shape that is an nw-shape without matching
edges. To delve deeper into the specifics of cnw-shapes, we enhance the labeling map
τ : V 7→ {int, call, ret} by incorporating two supplementary labels, read and write,
specifically designed for annotating nested-word vertices involved in memory opera-
tions. The mapping ℓ : V 7→ 2{l,r,m} remains unchanged. However, we extend the use
of m to encompass memory nodes as well. In the integration of these components, we
impose a key constraint: memory edges must not cross.

A contraction operation, as applied to nw-shapes, has the capability to absorb
only fully expanded vertices. The contraction operation for cnw-shape vertices works
similarly to the contraction operation for nw-shape in isolation, with the added nuance
that a memory edge incident on a vertex being absorbed is inherited by the first vertex
not contracted as we traverse backward along the chain formed by→-edges, originating
from the absorbed node. The contraction of a memory vertex operates similarly, with
the main difference being the absence of matching edges in this context. The treatment
of memory edges during the contraction operation aids us in determining, during a
merge operation, whether there would be a crossing memory operation in the original
multigraph represented in a merge-and-contract tree.

As in the case of nw-shapes, the merge operation is defined to achieve a multi-
graph union. Mergeability is defined as expected: (1) the nw-shapes corresponding to
the same thread must be mergeable, (2) the memory shapes must be meargeable, and

37

(3) additionally, we need to ensure that by merging the edges we do not give rise to
crossing memory edges.

By defining cnw-shape merge-and-contract trees using the same combination
of operations to define (nw-shape) merge-and-contract trees, we can establish an
analogous of Theorem 3, as follows:

Theorem 8 For every concurrent nested-word ω and k ≥ 3, there exists a k fully expanded
cnw-shape merge-and-contract tree T = (T, λ) such that G(T) is (isomorphic to) ω.

In a similar vein, we can define program concurrent nested-words by employing
two labeling functions, one for vertices of the nested-word components and another
for the vertices of the memory components. These elements serve as the foundation
for defining an encoding into an Sdta AP,k, enabling us to establish a result akin to
Theorem 7, as follows:

Theorem 9 Let P be a concurrent program, and consider k ≥ 3. It holds that: L(AP,k) 6= ∅ if
and only if the assertion checking problem for P admits a positive answer, taking into account
all and only the executions of P whose underlying concurrent nested-word has treewidth at
most k.

It is important to note that, for concurrent programs, we can only capture
computations up to a specified treewidth, limiting our ability to claim correct-
ness in general. Nevertheless, for programs exhibiting behavior leading to bounded
treewidth graphs, we can assert correctness, as demonstrated in specific instances
(see, for example, [19, 20]). Even in cases where complete correctness cannot be
proven, we can confidently state that our approach explores a broader range of com-
putations compared to other syntactic restrictions imposed on program behavior,
such as bounded context-switches [21–23], delay-bound [24], bounded-scope [25–28],
bounded-phase [2, 19], and other restrictions such as [20, 29].

8 Related work

Graph representations for executions and Courcelle’s theorem

The representation of computations through graphs was initially introduced by Alur
and Madhusudan within the realm of visibly pushdown automata [1]. Building upon
this foundation, Madhusudan and Parlato [2] extended the concept to a broader class
of automata, including multistack automata and distributed automata, where each
process is modeled as a pushdown automaton. Notably, in this scenario, the labeling
process involves a finite alphabet. In contrast to conventional approaches, our method-
ology involves associating each vertex with a tuple of elements capable of drawing
values from infinite sets. Our approach draws inspiration from the proof of Courcelle’s
theorem given in [30] and is anchored in the concept of shapes. Significantly, our
method utilizes the symbolic version of tree automata known as Sdta, and ultimately
CHC solvers [3].

38

Treewidth of behavior graphs

The verification of concurrent programs/pushdown automata is undecidable, as evi-
denced by the fact that encoding Turing machines only requires two threads. However,
over the past two decades, there has been a considerable body of literature dedicated
to studying concurrent automata. Researchers have explored ways to impose some
limitations to make this problem decidable and therefore more manageable. This line
of research started from the intuition, later supported by an empirical study [31], that
concurrency bugs often manifest within few context-switches [32]. This has triggered
a series of interesting results both of theoretical and practical interest. Among these
very effective from a practical point of view and often challenging from a theretical
point of view have been the approaches based on sequentializations (see [21–23, 33]
and references therein). From a theoretical standpoint, the primary challenge has
been to identify more expressive yet still decidable bounding parameters. We refer to
[2, 19, 20, 24, 27, 28, 34, 35] (and references therein) as a sample of this research.
Our work aligns with this pursuit as we introduce the width of the tree decomposi-
tion as a bounding parameter. Importantly, our methodology has the versatility to
encompass other existing approaches, as, to the best of our knowledge, they gener-
ate behavior graphs of bounded tree-width. Notably, a comprehensive result in the
realm of decidability is the resolution of MSO (Monadic Second-Order Logic) for all
MSO-definable classes of graphs with bounded treewidth [2, 36, 37], a generalization
of Courcelle/Seese’s theorem [38, 39].

Using Constrained Horn Clauses for verification

Our innovative methodology for program verification introduces a distinctive trans-
lation of the verification problem, leveraging the satisfiability of constrained Horn
clauses (CHCs). In the evolving landscape of verification tool design and implemen-
tation, our approach aligns with a notable research stream where CHCs serve as a
key intermediate representation [4, 10, 12, 13, 40]. This strategy not only enhances
the efficacy of verification tools but also contributes to the broader goal of advancing
formal verification techniques. Furthermore, our methodology represents a broaden-
ing or extension of the work presented in [41] to encompass programs with data types
beyond the Boolean type.

The growing success of CHC-based verification methodologies is supported by the
constant improvement of CHC solvers and at the same time fosters future enhance-
ments. Indeed, a number of solvers have been developed and figure in the annual CHC
competition [15], including Spacer [5] (currently integrated into Z3 [42]), Golem [43],
and Eldarica [44]. The approach introduced in the present paper could be easily
adapted to work with any of these solvers as a CHC-solving backend.

Using Constrained Horn Clauses in AI

CHCs have also been applied in the realm of multi-agent reasoning, specifically to
verify safety properties of behavior trees [45] and to solve infinite-state games [46]. In
the latter paper, the authors show that a significant class of games can be effectively
reduced to CHCs, and that such reduction leads to more efficient solutions compared
to the approaches that only employ the quantifier-free capabilities of SMT-solvers.

39

9 Conclusions

We have proposed a novel methodology for automated analysis that works for several
classes of programs, leveraging graph representations of their computations. The core
concept revolves around restructuring program behavior graphs via tree decomposi-
tions of a given width. To achieve this, we have introduced nested-word shapes, which
are essentially labeled multigraphs that serve as concise summaries of program behav-
iors for efficiently computing tree decompositions of nested words. These multigraphs
play a crucial role in defining symbolic data-tree automata [3]. These automata cap-
ture all possible tree decompositions of program behaviour graphs. Verification of the
original program is thus performed by checking the emptiness of the data tree lan-
guage accepted by these Sdtas. This last task can be efficiently solved through CHC
satisfiability. This translates the problem of program verification into an equivalent
CHC satisfiability problem, resulting in an effective reduction.

Our approach leads to an under-approximate analysis, meaning it may miss some
potential bugs due to the parameterization by the tree decomposition width k. How-
ever, increasing k improves accuracy but requires more computational resources. We
have presented our methodology for recursive sequential programs in full details, and
subsequently extended it to concurrent programs. Notably, our approach has the
potential to work for a broader class of programs, including distributed programs,
and concurrent programs with weak memory models, e.g., encoding approaches such
as [47, 48]. The constrained component of CHCs not only is suitable for handling
tree decompositions but also manages various characteristic features related to data
handling and types provided by programming languages [5].

We believe that his research can open avenues for enhanced automated program
analysis and verification techniques, offering opportunities for further exploration and
enhancement of our methodology. In particular, we see the following directions for
future work. Our framework is developed for programs with statically allocated mem-
ory, handling variables, arrays and structured variables formed by combining these
basic data types. Consequently, features of common programming languages related to
the static usage of memory — such as casting in the C language — can be seamlessly
integrated into our approach through the application of the theory of bitvectors. More
complex aspects, such as pointers and dynamic memory allocation, require further
investigation. For this, array theory is often used (e.g., [49, 50]), however it can result in
complex CHCs. Also, it would be important to investigate the practical impact of our
methodology giving particular attention to scalability on large scale programs. Fur-
thermore, another intriguing future research concerns with the development of a more
intricate specification language based on the Sdta framework. Extending the expres-
siveness of the specification language can empower users to express more complex
correctness properties (see for example [51]). Investigating how to encode and verify
specifications involving intricate temporal constrains possibly with with quantitative
measures can contribute to the applicability of our methodology.

40

Declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Funding Information

This work was partially supported by INDAM-GNCS 2022-24, AWS 2021 Ama-
zon Research Awards, the MUR project SOP (Securing sOftware Platforms - CUP:
H73C22000890001) as part of the SERICS project (Security and Rights in CyberSpace
- n. PE00000014 - CUP: B43C22000750006), Verifica di proprietà di sicurezza nello

sviluppo del software under the Start-up 2022 program funded by the Computer Sci-
ence Division UNIMOL, the MUR project Future AI Research (FAIR) Spoke 3, and
FARB 2022–24 grants of Università degli Studi di Salerno.

Authors’ contribution

All the authors contributed equally to this work.

Data Availability Statement

Not applicable.

Research Involving Human and /or Animals

This article does not contain any studies with human participants or animals
performed by any of the authors.

Informed Consent

Not applicable.

References

[1] Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H.,
Dang, Z. (eds.) Developments in Language Theory, 10th International Conference,
DLT 2006, Santa Barbara, CA, USA, June 26-29, 2006, Proceedings. Lecture
Notes in Computer Science, vol. 4036, pp. 1–13. Springer, (2006). https://doi.
org/10.1007/11779148 1 . https://doi.org/10.1007/11779148 1

[2] Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, pp. 283–294. ACM,(2011). https://doi.org/10.1145/1926385.1926419
. https://doi.org/10.1145/1926385.1926419

41

https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/11779148_1
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/1926385.1926419

[3] Faella, M., Parlato, G.: Reasoning about data trees using CHCs. In: Shoham,
S., Vizel, Y. (eds.) Computer Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part II. Lecture Notes
in Computer Science, vol. 13372, pp. 249–271. Springer, (2022). https://doi.org/
10.1007/978-3-031-13188-2 13

[4] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing
software verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’12, Beijing, China - June 11 - 16, 2012, pp. 405–416. ACM, (2012). https://doi.
org/10.1145/2254064.2254112

[5] Gurfinkel, A., Bjørner, N.: The science, art, and magic of constrained Horn
clauses. In: 21st International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2019, Timisoara, Romania, September 4-
7, 2019, pp. 6–10. IEEE, (2019). https://doi.org/10.1109/SYNASC49474.2019.
00010

[6] Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N.,
Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II - Essays
Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. Lecture Notes
in Computer Science, vol. 9300, pp. 24–51. Springer, (2015). https://doi.org/10.
1007/978-3-319-23534-9 2

[7] Champion, A., Chiba, T., Kobayashi, N., Sato, R.: Ice-based refinement type
discovery for higher-order functional programs. J. Autom. Reason. 64(7), 1393–
1418 (2020) https://doi.org/10.1007/s10817-020-09571-y

[8] Fedyukovich, G., Ahmad, M.B.S., Bod́ık, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: Cohen, A., Vechev, M.T.
(eds.) Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23,
2017, pp. 572–585. ACM, (2017). https://doi.org/10.1145/3062341.3062382

[9] Garoche, P., Kahsai, T., Thirioux, X.: Hierarchical state machines as modular
Horn clauses. In: Gallagher, J.P., Rümmer, P. (eds.) Proceedings 3rd Workshop
on Horn Clauses for Verification and Synthesis, HCVS@ETAPS 2016, Eindhoven,
The Netherlands, 3rd April 2016. EPTCS, vol. 219, pp. 15–28 (2016). https://
doi.org/10.4204/EPTCS.219.2

[10] Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343–361. Springer, (2015). https://doi.org/10.1007/978-3-319-21690-4 20

42

https://doi.org/10.1007/978-3-031-13188-2_13
https://doi.org/10.1007/978-3-031-13188-2_13
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.1109/SYNASC49474.2019.00010
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.4204/EPTCS.219.2
https://doi.org/10.4204/EPTCS.219.2
https://doi.org/10.1007/978-3-319-21690-4_20

[11] Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012: Formal Methods - 18th International Symposium,
Paris, France, August 27-31, 2012. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 7436, pp. 247–251. Springer, (2012). https://doi.org/10.1007/978-3-
642-32759-9 21

[12] Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: Jayhorn: A framework for
verifying java programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part I. Lecture Notes in Computer Science, vol.
9779, pp. 352–358. Springer, (2016). https://doi.org/10.1007/978-3-319-41528-
4 19

[13] Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pp. 222–233. ACM, (2011).
https://doi.org/10.1145/1993498.1993525

[14] Matsushita, Y., Tsukada, T., Kobayashi, N.: Rusthorn: Chc-based verification
for rust programs. In: Müller, P. (ed.) Programming Languages and Systems -
29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12075, pp. 484–514. Springer, (2020). https://doi.org/10.1007/978-3-
030-44914-8 18

[15] De Angelis, E., K., H.G.V.: CHC-COMP 2022: Competition report. In: Hamilton,
G.W., Kahsai, T., Proietti, M. (eds.) Proceedings 9th Workshop on Horn Clauses
for Verification and Synthesis and 10th International Workshop on Verification
and Program Transformation, HCVS/VPT@ETAPS 2022, and 10th International
Workshop on Verification and Program TransformationMunich, Germany, 3rd
April 2022. EPTCS, vol. 373, pp. 44–62 (2022). https://doi.org/10.4204/EPTCS.
373.5 . https://doi.org/10.4204/EPTCS.373.5

[16] Inverso, O., La Torre, S., Parlato, G., Tomasco, E.: Verifying programs by
bounded tree-width behavior graphs. In: Malvone, V., Murano, A. (eds.) Multi-
Agent Systems - 20th European Conference, EUMAS 2023, Naples, Italy,
September 14-15, 2023, Proceedings. Lecture Notes in Computer Science, vol.
14282, pp. 116–132. Springer, (2023). https://doi.org/10.1007/978-3-031-43264-
4 8

[17] Manna, Z., Zarba, C.G.: Combining decision procedures. In: Formal Methods
at the Crossroads. From Panacea to Foundational Support, 10th Anniversary
Colloquium of UNU/IIST, the International Institute for Software Technology

43

https://doi.org/10.1007/978-3-642-32759-9_21
https://doi.org/10.1007/978-3-642-32759-9_21
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/1993498.1993525
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.4204/EPTCS.373.5
https://doi.org/10.1007/978-3-031-43264-4_8
https://doi.org/10.1007/978-3-031-43264-4_8

of The United Nations University, Lisbon, Portugal, March 18-20, 2002, Revised
Papers. LNCS, vol. 2757, pp. 381–422. Springer, (2002)

[18] Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979) https://
doi.org/10.1109/TC.1979.1675439

[19] La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: 22nd IEEE Symposium on Logic in Computer Science (LICS 2007),
10-12 July 2007, Wroclaw, Poland, Proceedings, pp. 161–170. IEEE Computer
Society, (2007). https://doi.org/10.1109/LICS.2007.9

[20] Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of ordered multi-pushdown
automata is 2etime-complete. Int. J. Found. Comput. Sci. 28(8), 945–976 (2017)
https://doi.org/10.1142/S0129054117500332

[21] Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Pugh, W.W.,
Chambers, C. (eds.) Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation 2004, Washington, DC, USA,
June 9-11, 2004, pp. 14–24. ACM, (2004). https://doi.org/10.1145/996841.996845
. https://doi.org/10.1145/996841.996845

[22] Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009) https://doi.
org/10.1007/S10703-009-0078-9

[23] La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concur-
rent reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification, 21st International Conference, CAV 2009, Greno-
ble, France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer
Science, vol. 5643, pp. 477–492. Springer, (2009). https://doi.org/10.1007/978-3-
642-02658-4 36 . https://doi.org/10.1007/978-3-642-02658-4 36

[24] Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, pp. 411–422. ACM,(2011). https://doi.org/10.1145/1926385.1926432
. https://doi.org/10.1145/1926385.1926432

[25] La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J., König, B. (eds.) CONCUR 2011 -
Concurrency Theory - 22nd International Conference, CONCUR 2011, Aachen,
Germany, September 6-9, 2011. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 6901, pp. 203–218. Springer, (2011). https://doi.org/10.1007/978-3-
642-23217-6 14 . https://doi.org/10.1007/978-3-642-23217-6 14

44

https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/LICS.2007.9
https://doi.org/10.1142/S0129054117500332
https://doi.org/10.1145/996841.996845
https://doi.org/10.1145/996841.996845
https://doi.org/10.1007/S10703-009-0078-9
https://doi.org/10.1007/S10703-009-0078-9
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1007/978-3-642-23217-6_14
https://doi.org/10.1007/978-3-642-23217-6_14
https://doi.org/10.1007/978-3-642-23217-6_14

[26] La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: Fixed-
point, sequentialization, and tree-width. In: D’Souza, D., Kavitha, T., Rad-
hakrishnan, J. (eds.) IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17,
2012, Hyderabad, India. LIPIcs, vol. 18, pp. 173–184. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, (2012). https://doi.org/10.4230/LIPICS.FSTTCS.2012.
173 . https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173

[27] La Torre, S., Napoli, M., Parlato, G.: Scope-bounded pushdown languages.
Int. J. Found. Comput. Sci. 27(2), 215–234 (2016) https://doi.org/10.1142/
S0129054116400074

[28] La Torre, S., Napoli, M., Parlato, G.: Reachability of scope-bounded multistack
pushdown systems. Inf. Comput. 275, 104588 (2020) https://doi.org/10.1016/J.
IC.2020.104588

[29] Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs.
In: Yahav, E. (ed.) Static Analysis - 18th International Symposium, SAS 2011,
Venice, Italy, September 14-16, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6887, pp. 129–145. Springer, (2011). https://doi.org/10.1007/978-3-
642-23702-7 13

[30] Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, (2006). https://doi.org/10.1007/
3-540-29953-X

[31] Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and Imple-
mentation, San Diego, California, USA, June 10-13, 2007, pp. 446–455. ACM,
(2007). https://doi.org/10.1145/1250734.1250785

[32] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In:
Halbwachs, N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Lecture Notes in Computer
Science, vol. 3440, pp. 93–107. Springer, (2005). https://doi.org/10.1007/978-3-
540-31980-1 7

[33] Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded verifica-
tion of multi-threaded programs via lazy sequentialization. ACM Trans. Program.
Lang. Syst. 44(1), 1–1150 (2022) https://doi.org/10.1145/3478536

[34] La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack
pushdown automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.)

45

https://doi.org/10.4230/LIPICS.FSTTCS.2012.173
https://doi.org/10.4230/LIPICS.FSTTCS.2012.173
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173
https://doi.org/10.1142/S0129054116400074
https://doi.org/10.1142/S0129054116400074
https://doi.org/10.1016/J.IC.2020.104588
https://doi.org/10.1016/J.IC.2020.104588
https://doi.org/10.1007/978-3-642-23702-7_13
https://doi.org/10.1007/978-3-642-23702-7_13
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.1145/3478536

Mathematical Foundations of Computer Science 2014 - 39th International Sym-
posium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part
I. Lecture Notes in Computer Science, vol. 8634, pp. 377–389. Springer, (2014).
https://doi.org/10.1007/978-3-662-44522-8 32

[35] Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying concur-
rent programs by memory unwinding. In: Baier, C., Tinelli, C. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Con-
ference, TACAS 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings. Lecture Notes in Computer Science, vol. 9035, pp. 551–565. Springer, (2015).
https://doi.org/10.1007/978-3-662-46681-0 52 . https://doi.org/10.1007/978-3-
662-46681-0 52

[36] Enea, C., Habermehl, P., Inverso, O., Parlato, G.: On the path-width of inte-
ger linear programming. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth
International Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2014, Verona, Italy, September 10-12, 2014. EPTCS, vol. 161, pp. 74–87
(2014). https://doi.org/10.4204/EPTCS.161.9

[37] Enea, C., Habermehl, P., Inverso, O., Parlato, G.: On the path-width of integer
linear programming. Inf. Comput. 253, 257–271 (2017) https://doi.org/10.1016/
j.ic.2016.07.010

[38] Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990) https://doi.org/10.1016/0890-
5401(90)90043-H

[39] Seese, D.: The structure of models of decidable monadic theories of graphs.
Ann. Pure Appl. Log. 53(2), 169–195 (1991) https://doi.org/10.1016/0168-
0072(91)90054-P

[40] Gurfinkel, A.: Program verification with constrained Horn clauses (invited paper).
In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 13371, pp. 19–29. Springer, (2022). https://
doi.org/10.1007/978-3-031-13185-1 2

[41] La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using a
fixed-point calculus. In: Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, June 15-21, 2009, pp. 211–222. ACM,(2009). https://
doi.org/10.1145/1542476.1542500 . https://doi.org/10.1145/1542476.1542500

[42] Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008, Held as Part of the

46

https://doi.org/10.1007/978-3-662-44522-8_32
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.4204/EPTCS.161.9
https://doi.org/10.1016/j.ic.2016.07.010
https://doi.org/10.1016/j.ic.2016.07.010
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1007/978-3-031-13185-1_2
https://doi.org/10.1007/978-3-031-13185-1_2
https://doi.org/10.1145/1542476.1542500
https://doi.org/10.1145/1542476.1542500
https://doi.org/10.1145/1542476.1542500

Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Com-
puter Science, vol. 4963, pp. 337–340. Springer, (2008). https://doi.org/10.1007/
978-3-540-78800-3 24 . https://doi.org/10.1007/978-3-540-78800-3 24

[43] Blicha, M., Britikov, K., Sharygina, N.: The Golem Horn solver. In: Enea, C.,
Lal, A. (eds.) Computer Aided Verification - 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 13965, pp. 209–223. Springer, (2023). https://doi.org/10.
1007/978-3-031-37703-7 10 . https://doi.org/10.1007/978-3-031-37703-7 10

[44] Hojjat, H., Rümmer, P.: The ELDARICA Horn solver. In: Bjørner, N.S.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1–7. IEEE,
(2018). https://doi.org/10.23919/FMCAD.2018.8603013 . https://doi.org/10.
23919/FMCAD.2018.8603013

[45] Henn, T., Völker, M., Kowalewski, S., Trinh, M., Petrovic, O., Brecher, C.:
Verification of behavior trees using linear constrained horn clauses. In: Groote,
J.F., Huisman, M. (eds.) Formal Methods for Industrial Critical Systems -
27th International Conference, FMICS 2022, Warsaw, Poland, September 14-15,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13487, pp. 211–225.
Springer, (2022). https://doi.org/10.1007/978-3-031-15008-1 14 . https://doi.
org/10.1007/978-3-031-15008-1 14

[46] Faella, M., Parlato, G.: Reachability games modulo theories with a bounded safety
player. In: Williams, B., Chen, Y., Neville, J. (eds.) Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, pp. 6330–6337. AAAI Press, (2023). https://doi.org/10.
1609/AAAI.V37I5.25779 . https://doi.org/10.1609/aaai.v37i5.25779

[47] Tomasco, E., Nguyen, T.L., Inverso, O., Fischer, B., La Torre, S., Parlato, G.:
Lazy sequentialization for TSO and PSO via shared memory abstractions. In:
Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-Aided Design,
FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016, pp. 193–200.
IEEE, (2016). https://doi.org/10.1109/FMCAD.2016.7886679 . https://doi.org/
10.1109/FMCAD.2016.7886679

[48] Tomasco, E., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Using shared
memory abstractions to design eager sequentializations for weak memory models.
In: Cimatti, A., Sirjani, M. (eds.) Software Engineering and Formal Meth-
ods - 15th International Conference, SEFM 2017, Trento, Italy, September 4-8,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10469, pp. 185–202.
Springer, (2017). https://doi.org/10.1007/978-3-319-66197-1 12 . https://doi.

47

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1609/AAAI.V37I5.25779
https://doi.org/10.1609/AAAI.V37I5.25779
https://doi.org/10.1609/aaai.v37i5.25779
https://doi.org/10.1109/FMCAD.2016.7886679
https://doi.org/10.1109/FMCAD.2016.7886679
https://doi.org/10.1109/FMCAD.2016.7886679
https://doi.org/10.1007/978-3-319-66197-1_12
https://doi.org/10.1007/978-3-319-66197-1_12

org/10.1007/978-3-319-66197-1 12

[49] Komuravelli, A., Bjørner, N.S., Gurfinkel, A., McMillan, K.L.: Compositional
verification of procedural programs using horn clauses over integers and
arrays. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in Computer-Aided
Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015, pp. 89–96.
IEEE, (2015). https://doi.org/10.1109/FMCAD.2015.7542257 . https://doi.org/
10.1109/FMCAD.2015.7542257

[50] De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification
using constraint handling rules and array constraint generalizations. Fundam.
Informaticae 150(1), 73–117 (2017) https://doi.org/10.3233/FI-2017-1461

[51] Faella, M., Parlato, G.: A unified automata-theoretic approach to LTLf modulo
theories. In: ECAI 2024 - 27th European Conference on Artificial Intelligence,
19-24 October 2024, Santiago de Compostela, Spain. Frontiers in Artificial
Intelligence and Applications. IOS Press, (2024)

48

https://doi.org/10.1007/978-3-319-66197-1_12
https://doi.org/10.1109/FMCAD.2015.7542257
https://doi.org/10.1109/FMCAD.2015.7542257
https://doi.org/10.1109/FMCAD.2015.7542257
https://doi.org/10.3233/FI-2017-1461

	Introduction
	Programs with recursive procedure calls
	Formulas for programs

	Multigraphs and Decompositions
	Nested-Word Shapes
	Operations on shapes

	Trees of Nested-Word Shapes
	Program Verification Methodology
	Multigraph Data Structures for Program Computations
	Symbolic Data-Tree Automata
	Symbolic Data-Tree Automata for Nested-Word Decompositions

	Extension to Concurrent Programs
	Concurrent programs
	Behavior graphs for concurrent programs
	Concurrent nested-word shapes along with merge and contract operations

	Related work
	Graph representations for executions and Courcelle's theorem
	Treewidth of behavior graphs
	Using Constrained Horn Clauses for verification
	Using Constrained Horn Clauses in AI

	Conclusions

