
Reachability Games Modulo Theories with a Bounded Safety Player*

Marco Faella1, Gennaro Parlato2

1 University of Naples Federico II, Naples, Italy
2 University of Molise, Pesche, Italy

m.faella@unina.it, gennaro.parlato@unimol.it

Abstract

Solving reachability games is a fundamental problem for the
analysis, verification, and synthesis of reactive systems. We
consider logical reachability games modulo theories (in short,
GMTs), i.e., infinite-state games whose rules are defined by
logical formulas over a multi-sorted first-order theory. Our
games have an asymmetric constraint: the safety player has
at most k possible moves from each game configuration,
whereas the reachability player has no such limitation. Even
though determining the winner of such a GMT is undecid-
able, it can be reduced to the well-studied problem of check-
ing the satisfiability of a system of constrained Horn clauses
(CHCs), for which many off-the-shelf solvers have been de-
veloped. Winning strategies for GMTs can also be computed
by resorting to suitable CHC queries. We demonstrate that
GMTs can model various relevant real-world games, and that
our approach can effectively solve several problems from dif-
ferent domains, using Z3 as the backend CHC solver.

1 Introduction
Solving reachability games is a fundamental problem for the
analysis, verification, and synthesis of reactive systems, as
they are key tools for modeling such systems. Reachabil-
ity games are turn-based games played between two play-
ers, over a finite or infinite directed graph. The nodes of the
graph represent the configurations of the system it models,
while the edges of the graph represent transitions. REACH,
or the reachability player, aims to hit a target configuration.
In contrast, SAFE, or the safety player, has the opposite ob-
jective, i.e., to prevent REACH from reaching a target con-
figuration, thus keeping the system within a set of safe con-
figurations regardless of the choices of REACH.

In logical reachability games, the sets of initial and tar-
get configurations, and the players’ moves, are defined using
logical formulas. If a system has an enormous state space, if
not an infinite one, symbolic representations allow for not

*This work was partially supported by INDAM-GNCS 2022,
AWS 2021 Amazon Research Awards, the MUR project Future Ar-
tificial Intelligence Research (FAIR), and the MUR project ‘Inno-
vation, digitalisation and sustainability for the diffused economy in
Central Italy’, Spoke 1 MEGHALITIC, VITALITY Ecosystem.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

only a finite but often also a compact representation of the
system. Logical formulas, for example, can compactly de-
fine the set of transitions of programs, or the transition func-
tions of robots moving on an infinite grid. For this reason,
computing the winning strategy of logic games is essential
for solving relevant real-world problems, such as those re-
lated to software verification and synthesis, robotics, etc.
Our paper assumes that the components of the game are
multi-sorted first-order formulas. Specifically, we consider
quantifier-free formulas that are supported by modern SMT
solvers.

The problem of finding the winner of a logical game
is undecidable in general. Rice’s theorem states that all
non-trivial semantic properties of programs are undecidable.
Since we can easily model a program with logical formu-
las and use them as the transition function for one of the
players, it is easy to see that even the problem of determin-
ing the winner of a logical game is undecidable. It follows
that it is not possible to have an algorithmic solution that
terminates for all games, and any sound technique, like the
one we propose, will fail to terminate on some instances.
Among the approaches proposed in the literature, three are
closely related to ours, as they also target logical reachabil-
ity games. Beyene et al. (2014) reduce such games to a sys-
tem of constrained Horn clauses (CHCs) extended with ex-
istential quantifiers, with the aid of a user-provided strategy
template. Farzan and Kincaid (2018) focus on games whose
rules can be expressed in linear arithmetic and present an al-
gorithm that considers increasingly longer bounded-horizon
versions of the game, until either the reachability player wins
or the winning strategy of the safety player can be general-
ized to the original infinite-horizon game. Finally, Craig in-
terpolation is used by Baier et al. (2021) to propose a method
using subgoals, which are slices of the game a reachability
player must traverse to reach the target.

Our study introduces a special form of logical reachability
games, which allows us to model various relevant real-world
problems, in which the safety player has a bounded number
of moves from all game configurations, whereas the reach-
ability player has no such limitation. For example, consider
the Cinderella-Stepmother game, that we use as a running
example throughout the paper. Here, the two players share

n buckets with a fixed maximum capacity. The buckets are
arranged in a circle, and are initially empty. The game is
played in a discrete sequence of turns: when it is Cinderella’s
turn, she chooses two adjacent buckets and empties them;
when it is the Stepmother’s turn, she pours a total of 1 unit
of water into any subset of buckets. If any of the buckets
overflows, Stepmother wins. Otherwise, the game continues
forever and Cinderella wins. This game can be described as
a logical reachability game with Stepmother acting as the
reachability player, and Cinderella as the safety player. The
game fits in our framework as Cinderella only has n possible
moves from every configuration, i.e., one per bucket. The
Cinderella-Stepmother game is a real-world problem rele-
vant to wireless sensor networks despite its simple formu-
lation (Bodlaender et al. 2012; Beyene et al. 2014). Hence-
forth we refer to the class of logical reachability games we
study as reachability games modulo theories with a bounded
safe player (GMTs for short). Later in the paper, we show
that many real-world problems can be cast as GMTs.

The crucial property of GMTs is that a winning strategy
for player REACH induces a finite tree of game configu-
rations. This property allows us to reduce the problem of
determining the winner of a GMT to solving a system of
CHCs. Efficient algorithmic solutions and tools have been
developed for CHCs, often leveraging or generalizing tech-
niques developed in the context of automatic program veri-
fication (Grebenshchikov et al. 2012; Gurfinkel and Bjørner
2019; Bjørner et al. 2015). As a result, CHCs are often
used as an intermediate representation in a variety of veri-
fication and synthesis tools. Here, we follow a similar ap-
proach to solve the problem of determining the winner in
GMTs, obtaining several advantages over the state-of-the-
art. First, our reduction to CHCs is simple and direct, un-
loading the main burden of solving the game to the CHC
solver, which we treat as a black box. This allows us to fully
exploit present and future improvements in CHC solvers,
whose performance keeps improving year-over-year, as wit-
nessed by the competition on constrained Horn clauses
CHC-COMP (Fedyukovich and Rümmer 2021). Second, the
very simplicity of our approach provides significant time
savings in those benchmarks that fall within the GMT frame-
work. For example, we can solve the hardest cases of the
above-mentioned Cinderella-Stepmother game more than an
order of magnitude faster than the state-of-the-art.

Organization of the paper. Sec. 2 introduces the nota-
tion and definitions concerning CHCs. In Sec. 3, we define
GMTs and establish some fundamental properties. In Sec. 4,
we give an effective linear-time reduction from the problem
of determining the winner of our games to the satisfiability
problem of a CHC system, and describe some experiments
on various standard benchmarks. In Sec. 5, we present our
strategy synthesis algorithms. Concluding remarks can be
found in Sec. 6.

2 Constrained Horn Clauses
In this section, we introduce the notation and definitions we
will use in the paper on Constrained Horn Clauses.

We use N to denote the set of all natural numbers, Z to

stand for the set of integers, and B to represent the set {0, 1}.
For n ∈ N, we write [n] to denote the interval {1, . . . , n}.

We use the standard syntax and semantics for first-order
logic (FOL) with equality (Manna and Zarba 2002). We deal
with formulas of a many-sorted first-order theory D with
sorts data1, . . . , datan. For example, each of these theories
can be the theory of arithmetic, reals, arrays, etc. From now
on, we refer to D as the data theory of our games.
Definition 1. We fix a set R of uninterpreted fixed-arity rela-
tion symbols, which represent the unknowns in the system. A
Constrained Horn Clause, or CHC for short, is a formula
of the form H ← C ∧B1 ∧ · · · ∧Bn where:
• C is a formula of the data theoryD that does not contain

any relation symbol from R;
• for every i ∈ [n], Bi is an application p(v1, . . . , vk) of a

relation symbol p ∈ R to first-order variables v1, . . . , vk;
• H is the clause head and is either false , or it is an ap-

plication p(v1, . . . , vk) of a relation symbol p ∈ R to the
first-order variables v1, . . . , vk.

A CHC is a fact if its body has only the C component, and it
is a query if its head is false .

A finite set H of CHCs is a system, and it corresponds
to the first-order formula obtained by putting all its CHCs
in conjunction. We assume that the semantics of constraints
is given a priori as a structure. A system H with relation
symbols R is satisfiable if there exists an interpretation for
every relation symbol in R that makes all clauses inH valid.

Unsatisfiability of a system of CHCs, or a derivation of
false , corresponds to a counterexample that takes the form
of a path or tree representing a resolution derivation. We for-
malize the notion of counterexamples as follows. For k ∈ N,
a k-ary tree T , or simply a tree, is a finite and prefix-closed
subset of [k]∗. We call node an element of T , and we refer
to the node identified by the empty word ϵ as the root of T .
The edge relation is implicit: for i ∈ [k], if t and t.i are both
nodes of T , then (t, t.i) is an edge of T . Further, we say that
t.i is the i-th child of t, and t is the parent of t.i. A leaf is a
node without children, while an internal node is a node that
is not a leaf. The height of T is maxt∈T |t|.
Definition 2. Let H be a system of CHCs on the set of un-
knowns R. A counterexample of H is a triple (T, chc, val)
with the following components:
• T is a k-ary tree, for some k ∈ N;
• chc : T → H is such that chc(ε) is a query and chc(t)

is a fact for all leaves t;
• val labels each node t ∈ T with an evaluation of the

variables occurring in chc(t).
Moreover, for all t ∈ T , let

chc(t) = H ← C ∧B1 ∧ · · · ∧Bn,

the following conditions hold:
• C evaluates to true under the variable assignment
val(t);

• t has n children in T ;
• for all children t.i of t, let p(u1, . . . , uk) be the head

of chc(t.i), then Bi = p(v1, . . . , vk) and val(t)(vj) =
val(t.i)(uj) for all j ∈ [k].

Given a counterexample (T, chc, val), for all (non-root)
nodes t ∈ T , we denote by valH(t) the restriction of val(t)
to the variables occurring in the head of chc(t).

When H admits a counterexample (a derivation of false)
the clauses conflict, which means the system cannot be sat-
isfied. On the other hand, the completeness of the first-order
resolution implies that the reverse is also true. That is, the
absence of a derivation of false implies thatH is satisfied.

Theorem 1. A systemH of CHCs is unsatisfiable if and only
if there exists a counterexample ofH.

In this paper, we solve GMTs by reducing them to the
satisfiability of CHCs. Hence, the algorithms that compute
winning strategies use a CHC solver as a subprocedure. To
this aim, we consider the following API, inspired by the
standard language SMT-LIB (Barrett, Fontaine, and Tinelli
2017), which is supported by several state-of-the-art solvers
(de Moura and Bjørner 2008). These functions accept a CHC
systemH as input, but provide different outputs:

check-sat: It verifies the satisfiability of H. The output is
one of SAT/UNSAT/UNKNOWN.

get-model: Assuming that H is satisfiable, it returns a sat-
isfying assignment, i.e., an interpretation for the uninter-
preted symbols inH that renders all CHCs inH true.

get-proof: Assuming that H is unsatisfiable, it returns a
counterexample ofH.

Representing models and counterexamples. By defini-
tion, a counterexample is a finite tree labeled with variable
valuations, so we can safely assume that if the solver is able
to prove that the system is unsatisfiable, it can present an
explicit representation of a counterexample.1

On the other hand, a satisfying assignment includes an
interpretation for the relations in R, which may not be rep-
resented explicitly if some of the data domains are infinite.
Hence, we should expect the solver to present a symbolic
representation of such models, using some logic language
(possibly but not necessarily the same logic language in
which the game data constraints were presented). In the fol-
lowing (particularly in Sec. 5), we assume that the language
used to encode models is membership-decidable, i.e., it is
decidable whether a given variable valuation belongs to the
interpretation of a given relation symbol from R.

3 Games Modulo Theories
In this section, we define reachability games modulo theo-
ries with a bounded SAFE player (GMTs). There are a finite
number of variables in a GMT, and each variable can have a
finite or infinite domain. An evaluation of all variables rep-
resents a game configuration. The game starts from an ini-
tial configuration and players move in turns by alternating
a move of player REACH with a move of player SAFE. The
game specifies which player starts the game. We use for-
mulas on a combination of theories to define each player’s

1If (quantifier-free) data theory is decidable, we can obtain a
counterexample by logically describing a counterexample of height
h and then checking the satisfiability for increasing values of h.

moves, and the target configurations for player REACH. Un-
like REACH, which has an unrestricted transition function,
we limit with a constant the number of moves that SAFE can
make from any given game configuration.

To define the configurations of our games, we con-
sider a finite and ordered set of first-order variables V =
{v1, . . . , vh}. We assume that the sort datav of each variable
v ∈ V coincides with one of the domains of the game data
theory D. We denote by Val(V) the set of all total functions
that map each variable v ∈ V into a value of sort datav . For
our purposes, Val(V) represents the set of configurations of
any game having V as its set of variables. Given a valua-
tion val ∈ Val(V) and a formula φ of D with free variables
in V , we write φ(val) = φ[val(v1)/v1, . . . , val(vh)/vh] to
denote the Boolean value resulting from the evaluation of φ
when each variable v ∈ V is replaced by val(v). We also de-
fine a new set of first-order variables V ′ = {v′ | v ∈ V } as-
sociated to V , called the set of primed variables of V , where
the sorts of variable v and v′ coincide, i.e., datav = datav′ ,
for every v ∈ V . Furthermore, we define a map prime :
Val(V) → Val(V ′) that takes a valuation on V and con-
verts it into a valuation on V ′ in a natural way, i.e., if val ∈
Val(V) then prime(val) = val ′ where val ′(v′) = val(v),
for every v ∈ V . Finally, let V1 and V2 be two disjoint sets of
variables, and let val i ∈ Val(Vi), for i ∈ {1, 2}. We denote
by (val1 ∪ val2) the function with domain (V1 ∪ V2) that
combines val1 and val2 in the natural way: if v ∈ Vi with
i ∈ {1, 2}, then (val1 ∪ val2)(v) = val i(v).
Definition 3 (GAMES MODULO THEORIES). Let D be a
first-order theory with sorts data1, . . . , datan. A reachabil-
ity game G modulo D with a bounded SAFE player (GMT)
is a tuple (V, c0, p0, target , TREACH, {T i

SAFE}i∈[k]) where:
• V is a finite set of first-order variables where datav is a

sort ofD, for each v ∈ V . We call V the set of game vari-
ables. A configuration of G is an element in C = Val(V).

• c0 ∈ C is the initial configuration, and p0 ∈
{REACH, SAFE} is the initial player.

• target is a quantifier-free formula of D whose free vari-
ables are contained in V . A configuration c is target if
target(c) holds true.

• TREACH and T 1
SAFE, . . . , T

k
SAFE are each a D formula with

free variables in (V ∪ V ′), which collectively define the
moves of the game. Furthermore, for each configuration
c, the following holds:
– there is at least a configuration c′ such that

TREACH(c, prime(c′)) = true (i.e., TREACH is total);
– for every i ∈ [k], there is a unique configuration c′

such that T i
SAFE(c, prime(c′)) = true (i.e., T i

SAFE is
total and functional).

Example 1 (CINDERELLA-STEPMOTHER GAME AS A
GMT). Given values for n (number of buckets) and cap
(bucket capacity), we define V as the set of real-valued vari-
ables {b1, . . . , bn} where bi represents the content of the
bucket i, for i ∈ [n]. Since all buckets are initially empty,
the initial configuration c0 assigns zero to all variables
bi. Stepmother is player REACH, because her objective is
to reach an overflow configuration, and consequently Cin-
derella is player SAFE. The game is started by Stepmother,

so p0 = REACH. We define the formula target to capture an
overflow in at least one bucket:

target(b1, . . . , bn)
def
=

n∨
i=1

(
bi > cap

)
.

Then, we encode Stepmother’s ability to pour 1 unit of wa-
ter into any subset of buckets. TREACH(b1, . . . , bn, b

′
1, . . . , b

′
n)

holds iff:(n∑
i=1

b′i = 1 +

n∑
i=1

bi

)
∧

(n∧
i=1

(
b′i ≥ bi

))
.

Note that the number of possible successors following a
move of Stepmother is infinite since any partition of the wa-
ter unit is allowed.

Cinderella’s possible moves as the SAFE player are as
follows. For all i ∈ [n], she can empty bucket i and the next
one. So, T i

SAFE(b1, . . . , bn, b
′
1, . . . , b

′
n) holds iff:(∧

j∈{i,succ(i)}

(
b′j = 0

))
∧

(∧
j∈[n]\{i,succ(i)}

(
b′j = bj

))
,

where succ(i) is i + 1 if i < n, and 1 otherwise. T i
SAFE

thus defined is total and functional, so the whole game is a
GMT.

Next, we define the semantics of a GMT in terms of
moves, plays, and strategies. In the remainder of the paper,
unless otherwise specified, we refer to a fixed GMT with
components (V, c0, p0, target , TREACH, {T i

SAFE}i∈[k]).
Let c, c′ ∈ C be two configurations. There is a move of

player REACH from c to c′, denoted by c →REACH c′, if
TREACH(c, prime(c′)) holds true. Instead, there is a move of
player SAFE from c to c′, denoted by c →SAFE c′, if there is
an index i ∈ [k] such that T i

SAFE(c, prime(c′)) holds true.
A play is a possibly infinite sequence of configurations

π = c0c1 . . . with the following properties. Let len(π) ∈
N ∪ {∞} be the length of π, and last(π) be its last config-
uration (if any). Moreover, let pi ∈ {REACH, SAFE} be the
player whose turn it is to move at step i: p0 is one of the
game parameters, and the two players strictly alternate after
that. Then, the following properties hold:
• the sequence conforms to the moves of the two players:

for all i ∈ N, if len(π) > i, then ci →pi ci+1;
• all configurations c along π except the last one (if

it exists), are such that target(c) = false , whereas
the last configuration last(π) (if it exists) is such that
target(last(π)) = true .

We say that REACH wins all plays of finite length and loses
all those of infinite length. The opposite applies to SAFE.

We now describe the concept of strategy, which intu-
itively determines the next move to be made based on the se-
quence of configurations encountered so far. A history is any
finite prefix of a play. Denoting by Π the set of all histories,
a strategy for player p is a function f : Π→ C that maps ev-
ery history π to a configuration f(π) such that last(π) →p

f(π). A play π = c0c1 . . . conforms to a strategy f of p,
if for any proper prefix πi of π of the form c0c1 . . . ci, if

pi = p then ci+1 = f(πi). A strategy f is memoryless if
its value depends only on the last configuration of the his-
tory, i.e., for all histories π and π′, if last(π) = last(π′)
then f(π) = f(π′). Clearly, a memoryless strategy can be
represented as a partial function f : C ⇀ C.

A winning strategy for a player is a strategy that guar-
antees victory for the player regardless of the moves made
by the other player. Formally, a strategy f for player p is
winning if p wins all plays that conform to f . We also say
that player p wins the game G if there exists a winning strat-
egy for p. A winning strategy f for player REACH is always
associated with a strategy tree, which is a finite tree la-
beled with the configurations obtained by playing the game
according to f , and which includes all possible moves of
player SAFE: the root is labeled with c0, all internal nodes
where it is REACH’s turn to play have a single child labeled
with the configuration chosen by f , and all internal nodes
where it is SAFE’s turn to play have k children correspond-
ing to the k possible moves of player SAFE.

We say that a family of games is determined when ex-
actly one of the players has a winning strategy in each
game. The classic Borel determinacy result by Martin (Mar-
tin 1975) implies that GMTs are determined. Moreover, it
is well known that in reachability games both players have
memoryless winning strategies (Mazala 2002).

Theorem 2. GMTs are determined. Moreover, the winner
has memoryless winning strategy.

We will now demonstrate that while GMTs are deter-
mined, establishing which player wins the game is an unde-
cidable problem as soon as we consider theories of linear
integer (or real) arithmetic.

Theorem 3. The problem of deciding which player wins a
given GMT is undecidable.

Proof sketch. Observe that we can encode the transition re-
lation of a given two-counter machine M as a formula in
the theory of linear integer (or real) arithmetic, say ∆M. We
reduce the halting problem ofM, which is a well-known un-
decidable problem (Minsky 1967), into the problem of de-
termining the winner of a GMT G. The game G uses three
variables to encode the configurations of M: two for the
counters and one for the program counter. The initial config-
uration of G corresponds to the initial configuration of M.
We take ∆M to be the transition relation of player REACH,
and the identity relation as the transition function of player
SAFE. Thus,M halts if and only if REACH wins G.

4 Finding the Winner of a GMT Using CHCs
In this section, we show that the problem of determining the
winner of a GMT can be reduced, in linear time, to the sat-
isfiability problem of CHC systems.

We define the set of CHCs H(G) that, roughly speak-
ing, uses two uninterpreted relations s and r to character-
ize the game configurations from which player REACH wins
the game. In detail, r(c) (resp., s(c)) is meant to be true if
REACH wins when the game starts from configuration c and
it is REACH (resp., SAFE) turn to play. The set of CHCs
defining H(G) is shown in Figure 1. Rules (I) and (II) are

(I) r(c) ← target(c)

(II) s(c) ← target(c)

(III) r(c) ← TREACH(c, c
′) ∧ s(c′)

(IV) s(c) ←
∧

i∈[k] T
i
SAFE(c, c

′
i) ∧

∧
i∈[k] r(c

′
i)

(V)
false ← r(c0) if p0 = REACH

false ← s(c0) if p0 = SAFE

Figure 1: The system of CHCs H(G). Each of c, c′, and c′i
is a vector of h distinct variables. Variables from different
vectors are disjoint. In particular, c = (v1, . . . , vh).

two facts which allow us to initialize both s and r so that
s(c) and r(c) are both set to true for all target configurations
c of G. We also add a configuration c to the set defined by
r whenever there exists a configuration c′ such that REACH
has a move from c to c′ and s(c′) holds true (Rule (III)).
Rule (IV) says that a configuration c must belong to the set
defined by s if all configurations c′i where player SAFE can
transition from c belong to the set defined by r. In addition,
Rule (V) states that the system will become unsatisfiable the
moment an initial configuration must be included in s (resp.,
r) when p0 = SAFE (resp., p0 = REACH).

Before stating the main results of this section, we pro-
vide two technical lemmas. Given a configuration c of
G and a player p ∈ {REACH, SAFE}, let us denote by
G(c, p) the GMT that has the same components as G,
except for the initial configuration and the initial player
that are replaced by c and p, resp., i.e., G(c, p) =
(V, c, p, target , TREACH, {T i

SAFE}i∈[k]). We also denote by
head(z) the relation symbol that appears in the head of the
CHC z, provided that z is not a query.

Lemma 1. Let G be a GMT such that H(G) is unsatisfi-
able, and let (T, chc, val) be a counterexample of H(G).
Then, for every t ∈ (T \ {ϵ}), REACH wins G(valH(t), p),
where p = REACH if head(chc(t)) = r, and p = SAFE if
head(chc(t)) = s.

Proof. The proof is by structural induction on T , starting
from the leaves and ending in the root. Henceforth, we de-
note by c the game configuration valH(t).

The base case is when t is a leaf. By definition of coun-
terexample, chc(t) is either Rule (I) or (II) from Figure 1. In
both cases, it follows that target(c) = true and thus REACH
wins G(c, p), with a play that requires no moves.

For the inductive step, t must be an internal node.
We distinguish two cases based on the relation symbol
head(chc(t)). If that symbol is s, from the definition of
H(G) it follows that chc(t) must be Rule (IV) and therefore
t has exactly k children, t.1, . . . , t.k, corresponding to the k
possible moves of SAFE from c. Further, head(chc(t.i)) =
r, for every i ∈ [k]. By inductive hypothesis, REACH wins
G(valH(t.i), REACH), for all i ∈ [k]. Thus, no matter which
move SAFE takes from c, REACH wins G(c, REACH).

If instead that symbol is r, it follows that chc(t)
is Rule (III) and t has only t.1 as a child, and
head(chc(t.1)) = s. Let c1 = valH(t.1). By inductive
hypothesis, REACH wins G(c1, SAFE). When playing in
G(c, REACH), REACH wins with a strategy f that starts
with f(c) = c1 and then plays according to the game
G(c1, SAFE). This concludes the proof.

Lemma 2. If player REACH wins a GMT G then H(G) is
unsatisfiable.

Proof. Since REACH wins in G, from Theorem 2, there is
a memoryless winning strategy for REACH, say f(·), and a
strategy tree S = (T, λ) derived from f where T is a k-ary
tree and λ : T → C labels each node of T with a game con-
figuration. We define a counterexample T ofH(G), obtained
from S, which demonstrates thatH(G) is unsatisfiable.

We define T = (T ′, chc, val) as follows. T ′ is the re-
sult of adding a new node to T as its root, and T ’s root be-
comes its only child. As for the CHC associated to each node
through chc, we set the following associations:

• the newly added node to the unique query, i.e., Rule (V);
• every internal node different from the root with an even

(resp., odd) depth to Rule (III) if p0 is SAFE (resp.,
REACH), otherwise to Rule (IV); and

• each leaf to either Rule (I) or (II), depending on its depth.

Finally, we obtain val by naturally expanding λ, i.e., for each
node, we combine the label of the corresponding node in T
with those of its children.

It is easy to see that T defined above, that is, by straight-
forwardly deriving it from a strategy tree of REACH, forms
a counterexample ofH(G).

We can now state the main results of this section, as a
direct consequence of Lemmas 1 and 2.

Theorem 4. Let G be a GMT, player REACH wins G if and
only ifH(G) is unsatisfiable.

When coupled with the fact that GMTs are determined
(see Theorem 2), we have the following.

Corollary 1. Let G be a GMT, player SAFE wins G if and
only ifH(G) is satisfiable.

Experiments
We now report a selection of experiments comparing our
approach to the state-of-the-art. Somewhat surprisingly, our
direct encoding into CHCs manages to significantly outper-
form those custom techniques, often by orders of magnitude.

All experiments were performed on the virtual machine
provided by Baier et al. (2021), running on an AMD
Ryzen 2700X with 16GB of RAM. The VM was allotted
4 CPUs and 6GB of RAM. The CHC solver was Z3 v.4.8.7
64bit (de Moura and Bjørner 2008), whose CHC engine is
based on SPACER (Komuravelli et al. 2013).

Example 2. We applied the reduction described in this sec-
tion to the Cinderella-Stepmother game described in Ex-
ample 1, with n = 5 buckets and various values for the
bucket capacity. The experiment consisted in designing a

system of CHCs in the shape of Figure 1 in the language
SMT-LIB and feeding it to the SMT-solver Z3 (see (de Moura
and Bjørner 2008)). As shown in Table 1, the running times
are significantly lower compared to implementations of the
existing approaches of Faella and Parlato (2022) (column
MSO-D), Baier et al. (2021) (column CabPy), and Farzan
and Kincaid (2018) (column SimSynth).

Cap. Winner GMT MSO-D CabPy SimSynth
1.0 Stepmother 0.1 253.4 16.8 0.3
1.5 Stepmother 0.9 423.0 timeout 3.0
1.8 Stepmother 1.2 timeout timeout timeout
2.0 Cinderella 8.0 timeout timeout 162.0
3.0 Cinderella 2.6 timeout timeout 3.6
4.0 Cinderella 2.2 timeout timeout 0.8

Table 1: Results of the Cinderella-Stepmother experiments.
Times in seconds, timeout in 10 minutes.

Example 3. We consider the program synthesis exam-
ple from Beyene et al. (2014); Farzan and Kincaid (2018),
where the synthesized program must keep a real-valued tem-
perature within given bounds. Due to space constraints, we
refer to the cited papers for details on the model.
This problem can be framed as a GMT because the temper-
ature controller is the safety player and it can only make a
binary choice at each iteration. With such an encoding, Z3
could prove victory for the safety player in 0.01 sec, in line
with the state-of-the-art (we do not report exact times as they
are hardly significant at this scale).
Example 4. Nim is a board-game based on removing to-
kens from 3 distinct heaps. On their turn, players must re-
move at least one token and at most all tokens from a single
heap. The player who is able to take the last token from the
board wins. The game can start with any number of tokens
in the three heaps. When Nim is started from a fixed config-
uration, it is a finite-state game and therefore it can be cast
as a GMT. Table 2 reports the results, with the first column
denoting the initial heap sizes. On most instances, our ap-
proach performs one or two orders of magnitude faster than
competing tools.

Heap Sizes Winner GMT CabPy SimSynth
(1,2,3) REACH 0.36 1.6 3.1
(1,4,5) REACH 0.71 4.7 210.3
(3,5,6) REACH 4.50 30.9 timeout
(4,4,4) SAFE 3.30 27.2 16.1
(5,5,5) SAFE 0.90 80.6 92.5
(5,5,6) SAFE 0.93 212.3 timeout

Table 2: Results of the Nim experiments. Times in seconds,
timeout in 10 minutes.

5 Synthesis of Winning Strategies
In this section, we present algorithmic techniques for com-
puting a winning strategy for both types of players. Since
strategies may not be finitely representable, let us first clarify

what we mean by computing them. We focus on memoryless
strategies, thanks to Theorem 2, and distinguish two types of
strategy synthesis, plain and strong, which we will discuss
below. In both cases, we seek a procedure that returns the
move chosen by the strategy, given a configuration that con-
forms to the strategy itself. The difference is whether the
procedure recognizes such conformance (strong version), or
it just assumes it as a pre-condition (plain version). We now
formally define these two notions.

Assume that the game is won by player p and that f :
C ⇀ C is a memoryless winning strategy for p. We say that a
configuration c conforms to f if there exists a history π ∈ Π
such that: π conforms to f , the last configuration of π is c,
and it is p’s turn to move. In particular, c must not be a target
configuration (otherwise the game is over).
Plain synthesis of f . An algorithm that, given a game con-

figuration c that conforms to f , returns the configuration
f(c).

Strong synthesis of f . An algorithm that, given a game
configuration c, returns the configuration f(c) if c con-
forms to f , and UNDEF otherwise.

Next, we describe the strategy synthesis algorithms for the
two players.

Strategy Synthesis for Player REACH
When player REACH wins the games, by Theorem 4 the
CHC system H(G) is unsatisfiable. As discussed in Sec. 2,
we can assume that the solver supports the get-proof com-
mand, which provides a counterexample (T, chc, val) of
H(G). We now show how to use the counterexample to solve
the strong synthesis problem of a memoryless winning strat-
egy f for REACH. Given a configuration c, check if there is
a node t ∈ T such that chc(t) is Rule (III) from Figure 1 and
valH(t) = c. If there is no such node, return UNDEF. Oth-
erwise, by construction t has a single child t.1. Then, return
the configuration corresponding to valH(t.1).
Theorem 5. Let G be a GMT, and assume that REACH wins
G. Then, Algorithm 1 realizes the strong synthesis of a mem-
oryless winning strategy for player REACH.

Proof. By Theorem 1, let T = (T, chc, val) be a counterex-
ample of H(G). We can show that we can assume w.l.o.g.
that T corresponds to a memoryless strategy of REACH. I.e.,
for all nodes t1, t2 ∈ T if chc(ti) is Rule (III) for i = 1, 2

and valH(t1) = valH(t2) then valH(t1.1) = valH(t2.1).

Algorithm 1: Synthesizing a winning strategy for
REACH if a counterexample is available.
input : A configuration c and a counterexample

(T, chc, val) ofH(G)
output: A configuration or UNDEF
for t ∈ T do

if chc(t) = (III) and valH(t) = c then
return valH(t.1)

return UNDEF

We extract from T a memoryless winning strategy f for
player REACH, and prove that Algorithm 1 applied to T
solves the strong synthesis problem for f . Assume that the
initial player p0 is REACH since the other case is analogous.
We define f only for the game configurations correspond-
ing to the internal nodes t in the counterexample, such that
chc(t) is Rule (III), while we leave the f undefined else-
where. Specifically, any such node t has a single child t.1
and we set f(valH(t)) = valH(t.1).

The counterexample itself proves that f is winning. First,
each leaf t′ ∈ T is labeled with a target configuration
valH(t′). Then, starting with the initial configuration c0, f
guarantees that one of those target configurations will be
reached, regardless of the moves chosen by SAFE.

Finally, it is direct to see that Algorithm 1 indeed solves
the strong synthesis problem for the above strategy f .

Strategy Synthesis for Player SAFE

When player SAFE is the winner of G, we have that the CHC
system H(G) is satisfiable. We show two ways to compute
a winning strategy for player SAFE, depending on whether
or not the underlying CHC solver can provide a satisfying
assignment forH(G).

Synthesis With a Model. Assume that the CHC solver
supports the get-model command, and let I be an interpre-
tation of the uninterpreted relations of H(G) that makes all
the CHCs of the system true. We should be aware thatH(G)
may have more than one model. We shall see that our ap-
proach is correct regardless of the choice of I.

Given a configuration c, for all i ∈ [k] we find the unique
successor configuration ci corresponding to the i-th move of
player SAFE from c. This can be obtained by solving w.r.t.
c′ the satisfiability problem for T i

SAFE(c, c
′) in the data con-

straint logic. We then evaluate the interpretation I(r) on ci.
If I(r)(ci) is false , we return ci. If I(r)(ci) is true for all
i, we return UNDEF. Algorithm 2 implements the procedure
we have just described.

We can prove that Algorithm 2 synthesizes a winning
strategy for player SAFE, even if I is an over-approximation
of the set of configurations where REACH wins.

Theorem 6. Let G be a GMT, and assume that SAFE wins
G. Then, Algorithm 2 realizes the plain synthesis of a mem-
oryless winning strategy for SAFE.

Algorithm 2: Synthesizing a winning strategy for
SAFE if a model is available.
input : A configuration c and a satisfying

assignment I forH(G)
output: A configuration or UNDEF
for i ∈ [k] do

ci ← get-model
(
T i

SAFE(c, c
′)
)

if I(r)(ci) = false then
return ci

return UNDEF

Algorithm 3: Synthesizing a winning strategy for
SAFE if no model is available.
input : A configuration c
output: A configuration or UNDEF
for i ∈ [k] do

ci ← get-model
(
T i

SAFE(c, c
′)
)

x← check-sat
(
H(G(ci, REACH))

)
if x = SAT then

return ci

return UNDEF

Synthesis Without a Model. Unlike the solution pre-
sented earlier, here we show how to compute a winning strat-
egy for SAFE using a CHC solver that tells us only whether
a given CHC system is solvable or not, without the solver
providing us with a solution for the system’s uninterpreted
relations.

Algorithm 3 illustrates the approach. The idea is similar
to the one implemented in Algorithm 2, where the main
difference is that instead of querying the interpretation I,
we check the satisfiability of at most k CHC systems. In
particular, we repeat the following procedure for each of
the k successors of configuration c obtained as a result
of a move of player SAFE, i.e., all configurations ci such
that T i

SAFE

(
c, prime(ci)

)
holds true, for i ∈ [k]. For each

i ∈ [k], we solve the game G(ci, REACH), interrupting this
process as soon as player SAFE wins one of these games,
say G(cj , REACH). At that point, we return cj . The correct-
ness of the above procedure is stated in the following result,
whose proof can be found in the supplemental material.
Theorem 7. Let G be a GMT, and assume that SAFE wins
G. Then, Algorithm 3 realizes the plain synthesis of a mem-
oryless winning strategy for SAFE.

6 Conclusions
In this paper, we identified a class of logical reachability
games in which the safety player is allowed only a constant
number of moves from each game configuration, while the
reachability player is left unrestricted. These games, while
simpler than unrestricted games, can model many standard
benchmarks and real-world problems. We propose a direct
reduction to determine the winner of a GMT and a winning
strategy using only CHC solvers, which enables us to take
advantage of existing efficient technologies and future algo-
rithms for CHCs. Furthermore, our approach empowers us
to use a variety of logical theories, unlike existing solutions
that are mainly limited to the theory of linear arithmetic.

In the future, it would be interesting to develop a similar
approach for logical games in which the bound on the num-
ber of moves affects player REACH instead of SAFE. That
would be useful to model synthesis scenarios where a dis-
crete controller tries to reach a target region in the face of
continuous disturbances (Benerecetti and Faella 2017). We
also intend to apply our approach to impartial combinatorial
games (Wu et al. 2020), a class of infinite-state games where
both players have the same finite set of actions.

References
Baier, C.; Coenen, N.; Finkbeiner, B.; Funke, F.; Jantsch,
S.; and Siber, J. 2021. Causality-Based Game Solving. In
Silva, A.; and Leino, K. R. M., eds., Computer Aided Veri-
fication - 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part I, volume 12759
of Lecture Notes in Computer Science, 894–917. Springer.
Barrett, C.; Fontaine, P.; and Tinelli, C. 2017. The SMT-
LIB Standard: Version 2.6. Technical report, Department
of Computer Science, The University of Iowa. Available at
www.SMT-LIB.org.
Benerecetti, M.; and Faella, M. 2017. Automatic Synthesis
of Switching Controllers for Linear Hybrid Systems: Reach-
ability Control. ACM Trans. Embed. Comput. Syst., 16(4):
104:1–104:27.
Beyene, T.; Chaudhuri, S.; Popeea, C.; and Rybalchenko,
A. 2014. A constraint-based approach to solving games
on infinite graphs. In POPL’14, Proc. of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, 221–233.
Bjørner, N.; Gurfinkel, A.; McMillan, K. L.; and Ry-
balchenko, A. 2015. Horn Clause Solvers for Program Ver-
ification. In Fields of Logic and Computation II - Essays
Dedicated to Yuri Gurevich on the Occasion of His 75th
Birthday, volume 9300 of LNCS, 24–51. Springer.
Bodlaender, M. H. L.; Hurkens, C. A.; Kusters, V. J.; Staals,
F.; Woeginger, G. J.; and Zantema, H. 2012. Cinderella ver-
sus the wicked stepmother. In IFIP International Confer-
ence on Theoretical Computer Science, 57–71. Springer.
de Moura, L. M.; and Bjørner, N. S. 2008. Z3: An Effi-
cient SMT Solver. In Ramakrishnan, C. R.; and Rehof, J.,
eds., Tools and Algorithms for the Construction and Analy-
sis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, volume 4963 of Lec-
ture Notes in Computer Science, 337–340. Springer.
Faella, M.; and Parlato, G. 2022. Reasoning About Data
Trees Using CHCs. In Shoham, S.; and Vizel, Y., eds., Com-
puter Aided Verification - 34th International Conference,
CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part II, volume 13372 of Lecture Notes in Computer Sci-
ence, 249–271. Springer.
Farzan, A.; and Kincaid, Z. 2018. Strategy synthesis for
linear arithmetic games. In POPL, volume 2 of Proc. ACM
Program. Lang., 61:1–61:30.
Fedyukovich, G.; and Rümmer, P. 2021. Competition Re-
port: CHC-COMP-21. In Proceedings 8th Workshop on
Horn Clauses for Verification and Synthesis, HCVS@ETAPS
2021, Virtual, 28th March 2021, volume 344 of EPTCS, 91–
108.
Grebenshchikov, S.; Lopes, N. P.; Popeea, C.; and Ry-
balchenko, A. 2012. Synthesizing software verifiers from
proof rules. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing,
China - June 11 - 16, 2012, 405–416. ACM.

Gurfinkel, A.; and Bjørner, N. 2019. The Science, Art,
and Magic of Constrained Horn Clauses. In 21st Interna-
tional Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC 2019, Timisoara, Romania,
September 4-7, 2019, 6–10. IEEE.
Komuravelli, A.; Gurfinkel, A.; Chaki, S.; and Clarke, E. M.
2013. Automatic Abstraction in SMT-Based Unbounded
Software Model Checking. In Sharygina, N.; and Veith,
H., eds., Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Com-
puter Science, 846–862. Springer.
Manna, Z.; and Zarba, C. G. 2002. Combining Decision
Procedures. In Formal Methods at the Crossroads. From
Panacea to Foundational Support, 10th Anniversary Collo-
quium of UNU/IIST, the International Institute for Software
Technology of The United Nations University, Lisbon, Por-
tugal, March 18-20, 2002, Revised Papers, volume 2757 of
LNCS, 381–422. Springer.
Martin, D. A. 1975. Borel Determinacy. Annals of Mathe-
matics, 102(2): 363–371.
Mazala, R. 2002. Infinite games. In Automata logics, and
infinite games, 23–38. Springer.
Minsky, M. L. 1967. Computation: Finite and Infinite Ma-
chines. USA: Prentice-Hall, Inc. ISBN 0131655639.
Wu, K.; Fang, L.; Xiong, L.; Lai, Z.-R.; Qiao, Y.; Chen,
K.; and Rong, F. 2020. Automatic Synthesis of General-
ized Winning Strategies of Impartial Combinatorial Games
Using SMT Solvers. In IJCAI, 1703–1711.

