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ABSTRACT

bdi logics, i.e., logics with belief, desire and intention attitudes, are

one of the most widely studied formal languages for modelling ra-

tional agents. In this paper, we consider the logic Ctl∗bdi that aug-

ments the branching-time logic Ctl∗ with the bdi modalities and

adopt the possible-world semantics by Rao and George�. We re-

call that in this semantics bdi relations vary over time according to

a branching-time structure. We study the related model-checking

question for �nite-state structures, and in particular, we focus on

models that are described as tuples of Kripke structures (one for

eachworld) andwhere the bdi relations are captured by �nite-state

relations. Note that for formulas that do not contain bdimodalities

this corresponds to standard Ctl
∗ model-checking that is known

to be Pspace-complete. We show that by adding the bdimodalities

the computational complexity of model-checking remains Pspace-

complete. The problem is still Pspace-hard even if we disallow the

nesting of temporal operators in the path formulas, i.e., we restrict

to the temporal modalities of Ctl. Finally, we give a �xed-point

formulation of our algorithm for Ctlbdi that implements it on the

top of existing symbolic �xed-point solvers.

KEYWORDS

BDI logic; temporal logic; model-checking; agents.

ACM Reference Format:

Salvatore La Torre and Gennaro Parlato. 2020. On the Model-Checking of

Branching-time Temporal Logic with BDI Modalities. In Proc. of the 19th In-

ternational Conference on Autonomous Agents and Multiagent Systems (AA-

MAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION

The use of rational agents for modeling real world systems has

been thoroughly investigated and is now well accepted. An archi-

tecture that has emerged for the study of agent-oriented systems

sees such systems as rational agents having certain mental atti-

tudes of belief, desire, and intention (bdi agents). Agent beliefs can

be seen as the informative component of the system state, i.e., what

the system knows about the state of the environment. Agent de-

sires can be thought of as representing the motivational state of

the system, i.e., the information about the objectives to be accom-

plished including priorities or payo�s associated with them. Agent

intentions capture the deliberative component of the system, i.e.,

a high-level plan coming with the agent’s commitment to achieve

it (intentions force the agent to pursue certain desires) [8].

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar
(eds.), May 9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

bdi agents, and the related speci�cation languages denoted as

bdi logics, have received di�erent formulations (see [17]). Their

increasing use in the design and implementation of safety-critical

applications has also motivated several approaches to the veri�ca-

tion of such models (see [3, 5–7, 16]).

In this paper, we use the approach of Rao and George� [19, 20]

based on a possible worlds semantics where each possible world is

not an instantaneous state but rather a transition system: possible

worlds share (and are synchronized over) a branching-time struc-

ture whose time points represent the instantaneous states. Belief,

desire and intentions are expressed through accessibility relations

that relate the possible worlds at each time point and thus can pos-

sibly vary over time. Allowing these relations to vary over time is

an important modeling feature for capturing the behavior of sys-

tems (see [11] and references therein).

System properties are expressed using extensions of Ctl and

Ctl
∗ [10] with the belief, desire, and intention modal operators.

We denote these logics respectively asCtlbdi andCtl
∗
bdi. For logic

Ctlbdi, the model-checking question, i.e., determining whether a

given model satis�es a given speci�cation, and the satis�ability

question, i.e., whether a formula admits a model where it is ful-

�lled, have been studied respectively in [20] and [21]. In particular,

in [20] a polynomial time decision algorithm is given by restrict-

ing the worlds of the system models to have only a �nite number

of time points. Although the use of a �nite number of time points

su�ces to model some realistic scenarios such as those modeled

as decision trees (see [21]), in general this seems to be a serious re-

striction when dealing with reactive systems that typically exhibit

non-terminating behaviors.

In this paper, we investigate further the model-checking ques-

tion for bdi branching-time logics and study the model-checking

problem for Ctlbdi and Ctl
∗
bdi over �nite-state structures, where

we assume that models are described as tuples of Kripke structures

(one for each world) and where the bdi relations are captured by

�nite-state automata.

We show that Ctl∗bdi model-checking over �nite-state struc-

tures is in Pspace. Our decision algorithms build a �nite graph that

combines the Kripke structures representing the possible worlds

along with the �nite automata capturing the bdi-accessibility rela-

tions. The construction consists of the synchronous cross product

of all these transition systems. Thus, we can determine the ful�ll-

ment of a given formula φ by labeling each node u of the graph

with the φ sub-formulas that hold true at u. This is done similarly

to the standard Ctl model-checking algorithm which iteratively

labels the states of a Kripke structure by considering sub-formulas

with increasing number of operators (see [9]). We obtain the deci-

sion algorithm formodel-checkingCtl∗bdi by extending theCtlbdi
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model-checking algorithm similarly to how a decision algorithm

Ctl
∗ is obtained from that for Ctl [9].

For formulas without bdi modalities, Ctl∗bdi model-checking

corresponds to standard Ctl
∗ model-checking that is known to

be Pspace-complete. Thus, we immediately get that Ctl∗bdi model-

checking is Pspace-hard and thus Pspace-complete. We further

prove that the problem is still Pspace-hard even if we disallow the

nesting of temporal operators in the path formulas, i.e., we restrict

to the temporal modalities of Ctl, which shows that also Ctlbdi

model-checking is Pspace-complete.

Finally, we provide a �xed-point formulation of our decision

algorithm for Ctlbdi model-checking, which enables us to imple-

ment it on top of existing symbolic �xed-point engines. In partic-

ular, we implemented a prototype tool that uses the BDD-based

model checkerMucke [4] as back-end engine, and evaluated it on

a handful of small benchmarks.

The rest of the paper is organized as follows. In Section 2, we

give amotivating example. Section 3 is devoted to the formal de�ni-

tion of the logics, while in Section 4 we de�ne the corresponding

model-checking problems. In Section 5, we present our decision

algorithms, and in Section 6 we study the computational complex-

ity of the problem. We discuss an implementation of a prototype

tool and in particular give a �xed-point formulation of our Ctlbdi
decision algorithm in Section 7. We conclude the paper with few

observations in Section 8.

Preliminary results of the research reported in this paper were

given in [15].

2 EXAMPLE

In this section, we illustrate our settings with a simple example

that is based on an example reported in [20].

Consider a robot that can perform two tasks: getting a beer from

the refrigerator and opening the door. Both tasks require two ac-

tions. The �rst one requires the actions “go to the refrigerator" (gf)

and “bring back a can of beer" (bb), and the second one the actions

“go to the house door" (gd) and “open the door and go back" (od).

In case there is no beer in the refrigerator, the robot can “go back

without beer” (nb). Also, the doorbell can ring at any time and this

is captured by the action rng that can occur in any state. Figure 1.a

shows a corresponding transition system. We identify the time po-

sitions with the sequences of actions generated by this transition

system (which clearly corresponds to a tree structure given by the

unwinding of the transition system).

The only uncertainties in the environment are the presence or

not of a beer can in the refrigerator and of a person at the door

house. We can model these as beliefs by using two atomic propo-

sitions: br which stands for the robot believing that “a beer can is

in the refrigerator” and prs which stands for the robot believing

that “a person is at the door house”. We thus model the four pos-

sible beliefs with corresponding worlds that are obtained from the

above transition system by labeling the states according to one of

the possible choices for br and prs. Accordingly we denote these

worlds aswbr,prs,wbr ,wprs,w∅ . Figure 1.b shows worldwbr .

In the beginning, all the four beliefs are possible and thus all the

four worlds are belief-accessible. As soon as the robot realizes that

no beer is in the refrigerator (taking action nb) only the twoworlds
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Figure 1: (a) Robot events; (b) world for the belief “there is

a beer can in the refrigerator and no person at the door”;

(c) belief-accessibility relation; (d) world for the desire “high

reward"; (e) desire-accessibility relation.

matching this belief become accessible, i.e., worlds wprs and w∅ .

Also, if the doorbell rings, the robot changes its beliefs about the

presence of a person at the house door. After an action od is taken

the robot becomes again agnostic on whether there is a person

at the door. After a nb occurrence instead its believes about the

content of the refrigerator will not change forever (this might be

changed by adding a further event that a delivery man brings some

beer cans). It is simple to see that the just described accessibility

relation can be captured by the automaton in Figure 1.c, where

denotingW the set of all worlds in our model we set R1 =W ×W ,

R2 =W × {wbr,prs,wprs}, R3 =W × {wprs,w∅}, R4 =W × {wprs}.

Concerning to its desires, the robot wishes both to bring a beer

can back and open the door. However bringing back the beer too

often gives a lower reward (a cold beer is more enjoyable when

thirsty!). Also, if the robot goes to the refrigerator it does not de-

sire to go to the door until it opens the refrigerator, and similarly

the other way around. To capture this we introduce a new atomic

proposition hi that holds true if and only if the robot gets “high

reward”, and capture the desires with two more worlds whi and

wh̄i that are obtained from the transition system of Figure 1.a by

removing the transitions between states 2 and 1 such that we dis-

allow the sequences containing gf.gd and gd.gf. In addition, the

start state 0 of worldwhi is also labeled with hi (Figure 1.d).
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The desire-accessibility relation is designed to access the worlds

whi andwh̄i depending on whether the robot is in a “high reward”

or a “low reward” scenario. In Figure 1.e, we give an automaton

for the desire-accessibility relation that sends towh̄i (by R6 =W ×

{wh̄i}) whenever we attempt to get another beer can right after

getting one, and towhi (by R5 =W × {whi}) otherwise.

Robot intentions can be modeled by adding more worlds “re�n-

ing” the desire related worlds such that for example we enforce

some particular patterns of events to get a high reward. We omit a

detailed discussion of this in this version of the paper.

Consider the structureM formed of the tree structure obtained

by the unwinding of the transition system of Figure 1.a from state

0, the worlds {wbr,prs,wbr ,wprs,w∅ , whi , wh̄i}, and the bdi acces-

sibility relations de�ned by the labels R1, . . . ,R6. Starting from

state 0 of world wbr , a sample of a property that is ful�lled is

“whenever the robot believes that a beer can is in the refrigerator,

she can possibly bring it back” that can be expressed in Ctlbdi as

∀�( bel br → ∃^ bb). A sample of a property that is not ful�lled

instead is “whenever the robot believes that a beer can is in the

refrigerator, she can always bring it back” that can be expressed in

Ctlbdi as ∀�( bel br → ∃� bb ).

3 PRELIMINARIES

We brie�y recall the de�nitions of Ctlbdi and Ctl
∗
bdi [20]. Hence-

forth, for an integer k > 0, [k] will denote the set {1, . . . ,k}.

3.1 Syntax

A Ctl
∗
bdi formula can be a state or a path formula. State formulas

are inductively de�ned starting from atomic propositions by apply-

ing the logical connectives, the path quanti�ers (to path formulas)

and the belief (bel), desire (des), and intention (int) operators. Path

formulas are either state formulas or obtained by applying tempo-

ral operators such as next (©) and until (U). Formally, the syntax

of Ctl∗bdi is as follows:

De�nition 3.1 (Ctl∗bdi syntax). LetAP be the set of atomic propo-

sitions. A state formula is inductively de�ned as follows:

• p is a state formula, for p ∈ AP ;

• ¬φ and φ ∨ψ are state formulas, for state formulas φ andψ ;

• ∃φ and ∀φ are state formulas, for a path formula φ;

• belφ, desφ, and intφ are state formulas, for a state formula

φ.

Moreover, a path formula is either a state formula or any of ¬φ,

φ ∨ψ , ©φ, and φUψ where φ and ψ are path formulas. A Ctl
∗
bdi

formula is any state formula generated by the above rules. �

The syntax of Ctlbdi can be obtained from that of Ctl∗bdi by

disallowing the nesting of Boolean and temporal operators in the

path formulas. Namely, in Ctlbdi a path formula is just either ©φ

or φUψ , for state formulas φ andψ . Other operators such as→, �,

^ can be obtained as abreviations of the above ones as usual [9].

3.2 Semantics

The meaning of Ctl∗bdi, and thus of Ctlbdi, formulas is de�ned ac-

cording to a possible world semantics where each possible world

is not an instantaneous state but a transition system. All possible

worlds share (and are synchronized over) a branching-time struc-

ture whose time points represent the instantaneous states. The

meaning of the belief-desire-intention (bdi for short) operators is

given through accessibility relations that relate the possible worlds

at each time point and thus can possibly vary over time. The mean-

ing of temporal operators is instead related to the (temporal) acces-

sibility relation de�ned by the branching-time structure.

We now recall the notion of tree-structure. For k > 0, a k-ary

tree-structure is a pair (T ,R) where T ⊆ [k]∗ is a pre�x-closed set

and R = {(t , t ′) | t , t ′ ∈ T and t ′ = t .i for i ∈ [k]}. Note that the

empty word ε denotes the root of the tree. In the following, we will

refer to the elements of T as time points and to ε as root. Moreover,

T is assumed to be in�nite unless otherwise speci�ed.

A structure is formally de�ned as follows:

De�nition 3.2 (Structures). A structure for Ctl∗bdi (resp.,Ctlbdi)

formulas is a tuple M = (AP ,T ,R,W,B,D,I) where:

• AP is a set of atomic propositions;

• (T ,R) is a tree-structure;

• W is a set of possible worlds where each worldw ∈ W is a

tuple (Tw ,Rw ,Lw ) where Tw ⊆ T , Rw is the restriction of

R to Tw , (Tw ,Rw ) is a tree-structure and Lw : Tw → 2AP

assigns a set of atomic propositions to each time point inw ;

• for K ∈ {B,D,I}, K ⊆ W × T × W is such that for

(w, t ,v) ∈ K , t ∈ Tw ∩ Tv must hold (i.e., bdi accessibility

relations are consistently de�ned with respect to the world

time points).

R (resp., B,D, I) is called the temporal (resp., belief, desire, inten-

tion) accessibility relation. �

A path π in a world w = (Tw ,Rw ,Lw ) is a sequence of time

points t0t1 . . . such that (ti , ti+1) ∈ Rw for i ≥ 0. The meaning

of formulas is given by the satisfaction relation (see below) that is

de�ned starting from a time point for state formulas and along a

path for path formulas.

De�nition 3.3 (Ctl∗bdi semantics). For a world w ∈ W and a

structureM = (AP ,T ,R,W,B,D,I), the satisfaction relation |=

is inductively de�ned as follows (where t ∈ Tw , π = t0t1 . . . is a

path ofw and πi = ti ti+1 . . . is the su�x of π from ti ):

• M,w, t |= p i� p ∈ Lw (t) (where p ∈ AP );

• M,w, t |= ¬φ i�M,w, t 6 |= φ;

• M,w, t |= φ ∨ψ i� M,w, t |= φ or M,w, t |= ψ ;

• M,w, t |= ∃φ i� there is a path π ′ ofw starting from t such

that M,w, π ′ |= φ;

• M,w, t |= ∀φ i� for all paths π ′ ofw from t ,M,w,π ′ |= φ;

• M,w, t |= belφ i� for all v ∈ W such that (w, t ,v) ∈ B, it

must hold M,v, t |= φ (similarly for desφ and intφ);

• if φ is a state formula, M,w, π |= φ i� M,w, t0 |= φ;

• M,w, π |= ¬φ i� M,w, π 6 |= φ;

• M,w, π |= φ ∨ψ i� M,w,π |= φ orM,w, π |= ψ ;

• M,w, π |= ©φ i�M,w, π ′ |= φ where π ′
= t1 . . .;

• M,w, π |= φUψ i� there is a j ≥ 0 such thatM,w,πj |= ψ

and M,w,πi |= φ for 0 ≤ i < j.

We say M satis�es a Ctl
∗
bdi formula φ at a world w , written as

M,w |= φ, i�M,w, root |= φ. �

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

683



4 MODEL-CHECKING

We de�ne our model-checking problem over �nite-state structures

where the accessibility relations are captured by �nite-state transi-

tion systems. In particular, we assume a �nite number of possible

worlds where each world corresponds to the unrolling of a Kripke

structure (a �nite-state transition system whose states are labeled

with atomic propositions). Furthermore, the bdi relations are cap-

tured by a �nite automaton over the paths of the corresponding

tree-structures.

We start recalling the de�nition of Kripke structures1. For a set

of atomic propositionsAP and a posistive integer k , a Kripke struc-

ture K of arity k is a triple (S,ν , λ) where S is a �nite set of states,

ν : S × [k] → S is a partial successor function that assigns to each

state its i-successor state if any for i ∈ [k], and λ : S → 2AP is a

labeling function.

From K and a state s ∈ S , we can de�ne a corresponding tree-

structure τ (K , s) = (T ,R) by unrolling the loops of K and taking s

as the root. Formally, τ (K , s) is inductively de�ned as the minimal

k-ary tree-structure such that (we also de�ne a function τK,s that

maps time points to corresponding states of the Kripke structure):

(1) root ∈ T and τK,s (root) = s , and (2) for t ∈ T , if ν (τK,s (t), i) =

s ′′ then t .i ∈ T and τK,s (t .i) = s
′′.

We assume that the reader is familiar with the main de�nitions

of �nite automata (see [12]). For a �nite automaton A and a state

s , we denote with L(A, s) the language accepted by A assuming

s as the sole accepting state (i.e., the language accepted by A is

L(A) =
⋃
s ∈F L(A, s) where F is the accepting set of A).

For a setW and a tree-structure (T ,R), a relationK ⊆W ×T ×

W is �nite-state over T if there is a deterministic �nite automaton

A with set of states Q , and a mapping µ : Q → 2W ×W such that

K =

⋃
s ∈Q {(w, t ,w ′) | (w,w ′) ∈ µ(s) and t ∈ L(A, s) ∩ T }. If

this is the case, we also say that K is de�ned by A and µ, denoted

K = rel(A, µ).

We introduce the notion of �nite-state structure that wewill use

to de�ne the model-checking problem we wish to solve.

De�nition 4.1 (Finite-state structure). A structure forCtl∗bdi (resp.,

Ctlbdi) formulas M = (AP ,T ,R,W,B,D,I) is �nite state if

W contains a �nite number of possible worlds and for some in-

teger k > 0 and for w ∈ W, there are Kripke structures Kw =

(Sw ,νw , λw ) of arity k and states sw ∈ Sw such that:

• T = ∪w ∈WTw and R = ∪w ∈WRw where τ (Kw , sw ) =

(Tw ,Rw );

• for K ∈ {B,D,I}, K ⊆ W × T × W is a �nite-state

relation over T .

According to the above de�nition, we have that a �nite-state

structure M = (AP ,T ,R,W,B,D,I) has a �nite representation

of the form (AP ,k,W, K̄ ,AB ,AD ,AI , µB , µD , µI ) where k > 0

is an integer, K̄ = {(Kw , sw ) | w ∈ W} and K = rel(AK , µK )

for K ∈ {B,D,I}. In the following, we will denote �nite-state

structures through their �nite representation.

We wish to study the following decision problems.

1We slightly deviate from the standard de�nition of Kripke structure by numbering
the transitions leaving from a state. This has the only purpose of facilitating the trans-
lation to a corresponding tree-structure.

De�nition 4.2 (Ctl∗bdi/Ctlbdi model-checking problem). Given a

�nite-state structureM = (AP ,k,W, K̄ ,AB ,AD ,AI , µB , µD , µI ),

a world w and a Ctl
∗
bdi (resp., Ctlbdi) formula φ,

the Ctl
∗
bdi (resp., Ctlbdi) model-checking problem asks whether

M,w |= φ.

The rest of the paper is mostly devoted to show the following

theorem stating the complexity of the considered problems.

Theorem 4.3. The Ctl∗bdi and Ctlbdi model-checking problems

are Pspace-complete.

Moreover, Ctlbdi model-checking can be solved in time exponen-

tial in the number of possible worlds, and polynomial in the size of

the formula and the size of the automata capturing the bdi relations.

Ctl
∗
bdi model-checking instead can be solved with an extra expo-

nential time in the size of the formula.

5 DECISION ALGORITHMS

Our decision algorithms constructs a �nite graph that combines

the Kripke structures representing the possible worlds along with

the �nite automata capturing the bdi-accessibility relations. Essen-

tially the construction consists of the synchronous cross product

of all these transition systems. Such graph allows us to determine

the ful�llment of a given formula φ by labeling each node u of

the graph with the φ sub-formulas that hold true at u. Such a la-

beling can be obtained by adapting the decision algorithms given

for Ctl and Ctl∗ model-checking (see [10]) which iteratively label

the states of a Kripke structure by considering sub-formulas with

increasing number of operators.

For the rest of this section we �x the following:

• W = {w1, . . . ,wn }, a set of n > 0 worlds and

• M = (AP ,k,W, K̄ ,AB ,AD ,AI , µB , µD , µI ), a �nite-state

structure with a set of Kripke structures K̄ = {(Kw , sw ) |

w ∈ W} where each Kw = (Sw ,νw , λw ) has arity k > 0.

We de�ne a graphGM as follows.

The vertices of GM are of the form (wi , s1, . . . , sn ,qB ,qD ,qI )

where: (1) i ∈ [n], wi denotes the current world, (2) for j ∈ [n], sj
either belongs to Kw j and is the current state of world w j or is a

dummy state⊥ denoting that the current one is not a time point of

worldw j , and (3) qK is the current state ofAK forK ∈ {B,D,I}.

The edges ofGM come from the accessibility relations ofM and

are labeled consistently: edges derived from the temporal accessi-

bility relation are labeled with the corresponding index from [k]

while those derived from the accessibility relation K with a fresh

symbol σK forK ∈ {B,D,I}. Formally, denote ν̄w the total func-

tion obtained by completing νw by assigning ⊥ whenever it is not

de�ned, i.e., ν̄w (s, j) = ν (s, j) if νw (s, j) is de�ned and ν̄w (s, j) = ⊥

otherwise (note that ν̄w (⊥, j) = ⊥ for each j ∈ [k]). For verticesu =

(wi , s1, . . . , sn ,qB ,qD ,qI ) and u
′
= (wi′ , s

′
1, . . . , s

′
n ,q

′
B
,q′

D
,q′

I
)

ofGM , we let (u,γ ,u ′) be an edge ofGM if and only if either one

of the following cases holds (we assume that components of u ′

equals the corresponding ones from u unless di�erently speci�ed):

• γ ∈ [k], i ′ = i , s ′j = ν̄wi (sj ,γ ) for j ∈ [n], and (qK ,γ ,q
′
K
) is

a transition of AK for K ∈ {B,D,I} (we say that u ′ is a

γ -temporal successor of u);

• γ ⊆ {σB ,σD ,σI }, γ , ∅, and for σK ∈ γ , (wi ,wi′) ∈

µK (qK ) (u ′ is said to be K successor of u for each σK ∈ γ ).
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Note that eachGM vertex has at mostk+n successors. Denoting

λM (u) = λwi (si ) for each vertexu = (wi , s1, . . . , sn ,qB ,qD ,qI ) of

GM , we de�ne the labeled graph GM as the graphGM augmented

with the labeling function λM . We observe that GM di�ers from

standard Kripke structures only for the distinction of the transi-

tions into temporal and bdi ones. It is straightforward to extend

the notation τ de�ned in Section 4 for Kripke structures to graphs

GM by a (k + n)-ary tree-structure, and thus we omit further de-

tails on this. Again we denote τ (GM ,u) the tree-structure obtained

from GM starting from u by unrolling the loops of GM .

By τ (GM ,u), we can thus de�ne the satis�ability of Ctl
∗
bdi (and

hence of Ctlbdi) formulas with respect to GM by treating a for-

mula of the form Kφ, with K ∈ {B,D,I}, as the corresponding

temporal logic formula ∀ © φ where the universal quanti�cation

is restricted to only the K successors of the current vertex. Analo-

gously, standard path quanti�ers are restricted to only the tempo-

ral successors. The formal de�nition can be easily obtained from

De�nition 3.3 and the above observations. Therefore, we omit it

here, and again use GM , t |= φ (resp., GM ,π |= φ) meaning that φ

holds in GM starting from time point t (resp., along path π ).

From the given semantics, we have that the model-checking

problem for Ctl∗bdi (resp., Ctlbdi) reduces to the corresponding

question on the labeled graph GM . For a world w , we de�ne the

initial vertex of GM corresponding to w the only vertex of the

form (w, sw1 , . . . , swn ,q
0
B
,q0

D
,q0

I
) where q0

K
is the initial state of

AK for K ∈ {B,D,I} (recall that each swi is the state coupled

with the Kripke structure Kwi in the �nite-state structure we have

�xed earlier in this section).

Lemma 5.1. For a worldw and a Ctl∗bdi formula φ, we get:

M,w |= φ i� GM ,u |= φ,

where u is the initial state of GM corresponding tow .

A crucial property of GM is that as for standard Kripke struc-

tures the truth of branching-time state formulas depends only on

the state, i.e., a state formulaφ is true at a time point t of τ (GM ,u) if

and only if it is true at any other time point t ′ such that τGM,u (t) =

τGM,u (t
′). To see this, for a k-ary tree-structure (T ,R), we de�ne

the abstract subtree rooted at t ∈ T as the k-ary tree-structure

(T ′
,R ′) where T ′

= {t ′ | t .t ′} and R ′
= {(t ′, t ′.i) ∈ R | t ′ ∈ T ′}.

Thus, directly from the de�nition of τ (GM ,u), we get that the ab-

stract subtrees rooted at t and t ′ coincide for all time points t , t ′ of

τ (GM ,u) such that τGM,u (t) = τGM,u (t
′), and hence the property

stated above holds.

Lemma 5.2. Given a Ctl
∗
bdi state formula φ, for all time points

t , t ′ such that τGM,u (t) = τGM,u (t
′) we get:

τ (GM ,u), t |= φ i� τ (GM ,u), t
′ |= φ.

The above lemma allows us to give for ourmodel-checking ques-

tions two �xed-point decision algorithms in the style of those given

for Ctl and Ctl∗. Such algorithms proceed bottom-up on the syn-

tactic structure of φ and starting from the labeling given by the

truth of the atomic propositions, progressively label each vertex

u of the graph with the sub-formulas that holds true there. The

rules of the algorithm for Ctlbdi, denoted Alg-Ctlbdi, are given

in Figure 2.

To get a decision algorithm for Ctl∗bdi we can reason similarly

to how a decision algorithmCtl
∗ is obtained from that forCtl (see

Let M = (AP, k, W, K̄, AB, AD, AI, µB, µD, µI ) where:

K̄ = {(Kw , sw ) | w ∈ W} and Kw = (Sw , νw , λw ).

Initialization.

For each vertex u of GM , set lab(u) = λM (u).

Update rules.

For each vertex u of GM :

(1) if φ = ¬ψ then φ ∈ lab(u) i� ψ < lab(u);

(2) if φ = φ1 ∨ φ2 then φ ∈ lab(u) i� either φ1 ∈ lab(u) or φ2 ∈

lab(u);

(3) if φ = ∃ ©ψ , then φ ∈ lab(u) i� there is a temporal successor

u′ of u such that ψ ∈ lab(u′);

(4) if φ = ∀ © ψ , then φ ∈ lab(u) i� for all temporal successors

u′ of u it holds that ψ ∈ lab(u′);

(5) if φ = ∃(φ1Uφ2), then φ ∈ lab(u) i� either φ2 ∈ lab(u), or

φ1 ∈ lab(u) and there is a temporal successor u′ of u such that

φ ∈ lab(u′);

(6) if φ = ∀(φ1Uφ2), then φ ∈ lab(u) i� either φ2 ∈ lab(u), or

φ1 ∈ lab(u) and for all temporal successorsu′ ofu it holds that

φ ∈ lab(u′);

(7) if φ = belψ , then φ ∈ lab(u) i� for all B successors u′ of u it

holds that ψ ∈ lab(u′) (similarly for desφ and intφ).

Figure 2: Fixed-point decision algorithm Alg-Ctlbdi for

Ctlbdi model-checking.

[9] for details). In particular, for a path formula φ denote with φ ′

the Ltl formula obtained by replacing in φ its state sub-formulas

with new atomic propositions. Thus, the truth of φ at a vertex u of

GM is determined by a query to an Ltlmodel-checking algorithm

on φ ′ by taking for the added atomic proposition the evaluation

given by lab to the corresponding state formulas. We denote with

Alg-Ctl∗bdi the resulting decision algorithm.

The correctness of algorithms Alg-Ctlbdi and Alg-Ctl∗bdi is a

consequence of Lemmas 5.1 and 5.2, and the above observations.

Thus we have:

Lemma 5.3. Given aCtlbdi (resp.,Ctl
∗
bdi) state formulaφ, a �nite-

state structure M and a worldw ,

M,w |= φ i� φ ∈ lab(u)

where lab is the labeling computed by Alg-Ctlbdi (resp., Alg-Ctl
∗
bdi)

and u is the initial state of GM corresponding tow .

6 COMPUTATIONAL COMPLEXITY

6.1 Upper bound

We observe that the construction of GM causes an exponential

blow-up in the size ofM. In fact, the number of vertices of GM is

O(n χn η3) where χ is the maximum number of states over the n

Kripke structures denoting the possible worlds of M and η is the

maximumnumber of states over the �nite-state automata denoting

the bdi accessibility relations of M. Moreover, for each vertex of

GM there are at most k + n outgoing edges where k is the arity

of the Kripke structures. Thus, the overall number of GM edges

is O(kn2 χn η3). For a formula φ the number of its sub-formulas is

linear in the size ofϕ (denoted |φ |). Thus, the �xed-point algorithm

Alg-Ctlbdi will converge in at most O(|φ | kn2 χn η3) steps, and

since each step require at most O(n) time, we get the following:
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Theorem 6.1. The Ctlbdi model-checking problem can be solved

in time exponential in the number of possible worlds, and polynomial

in the size of the formula and the size of the automata capturing the

bdi relations.

We recall that the Ltlmodel-checking can be solved in time ex-

ponential in the size of the formula and linear in the size of the

model [18]. Thus, the decision algorithm Alg-Ctl∗bdi requires ex-

ponential time also in the size of the formula.

Theorem 6.2. The Ctl∗bdi model-checking problem can be solved

in time exponential in the number of possible worlds and the size of

the formula, and polynomial in the size of the automata capturing

the bdi relations.

In the following, we will argue that the algorithm Alg-Ctl∗bdi,

and thus Alg-Ctlbdi, can be indeed implemented in polynomial

space. The idea is to avoid the explicit labeling of the vertices of

GM and use a polynomial-space oracle to recover the truth values

of the state sub-formulas. This oracle can be obtained as follows.

As before, for a path formula φ denote with φ ′ the Ltl formula

obtained by replacing in φ the state sub-formulas with new atomic

propositions. The oracle recovers the truth value of φ again by run-

ning the Ltl model-checking algorithm on φ ′ but now whenever

we need the truth value of a new atomic proposition we make a

query recursively on the corresponding state formula. Since the

Ltlmodel-checking is Pspace-complete [18], each such query can

be done in polynomial space. Moreover, at each vertex we need

to collect a number of truth values that is linear in the length of

φ ′ and once we progress to the next vertex we can forget about

the previously computed values, thus at any time we will use at

most additional polynomial space for each oracle call. Furthermore,

the number of oracle calls pending in the call stack at any time is

bounded by the depth of the nesting of the bdi operators and path

quanti�ers, and thus it is at most linear in the length of the formula.

Therefore, the overall additional space taken to determine the truth

of state formulas at a vertex of GM is at most polynomial in the

sizes of the model and the formula. Thus, we get:

Lemma 6.3. The Ctl∗bdimodel-checking problem is in Pspace.

We recall that Ctlmodel-checking is in Ptime and Ctl∗ model-

checking is Pspace-complete [9]. Thus, theCtl∗bdi model-checking

problem is Pspace-complete. In the next section, we show that in-

deed also the upper bound for Ctlbdi model-checking cannot be

improved.

6.2 Lower bound

We show a Pspace lower bound for the Ctlbdi model-checking

problem. Our reduction is from the satis�ability problem of quan-

ti�ed Boolean formulas that is known to be Pspace-complete [12].

For this you only need to use one of the bdi operators. The actual

choice is irrelevant, and we will use the operator bel.

To illustrate the reduction we �x a quanti�ed Boolean formula

ψ of the form Q1x1. . . . .Qnxn .φ where Qi ∈ {∃,∀} for i ∈ [n] and

φ is a Boolean formula over variables x1, . . . ,xn .

The crux of our reduction is to design a machinery that can ac-

count for all the possible valuations of x1, . . . ,xn . For this we use

дwi

ai

s1

ai

s̄1

ai

s2

ai

s̄2

ai

si

ai

s̄i

ai

si+1,1

ai

si+1,2

ai

s̄i+1,1

ai

s̄i+1,2

ai

si+2,1

ai

si+2,2

ai

s̄i+2,1

ai

s̄i+2,2

ai

sn−1,1

ai

sn−1,2

ai

s̄n−1,1

ai

s̄n−1,2

ai

sn,1

ai , pi

sn,2

ai , pi

s̄n,1

ai

s̄n,2

ai

Figure 3: Graphical representation of the Kripke structure

Kwi .

a di�erent world for each variable xi and then we use the bel op-

erator to collect a whole valuation of the variables. The main chal-

lenge here comes from the fact that the worlds are synchronized

over time and thus we cannot just select independently the value

of each variable but we also need to maintain this selection up to

the vertices where the formula will be evaluated.

In the following we describe in details the �nite-state structure

and the Ctlbdi formula we construct in our reduction.

Finite-state structure. Weconstruct a �nite-state structureMφ =

(AP ,k,W, K̄ ,AB ,AD ,AI , µB , µD , µI )whereW = {w1, . . . ,wn },

the bdi accessibility relations do not vary over time and assign

always W × W (all the worlds are always bdi accessible), and

K̄ = {(Kw1 ,дw1 ), . . . , (Kwn ,дwn )} is described below.

Figure 3 illustrates the Kripke structures from K̄ . We use the

atomic propositions a1, . . . ,an and p1, . . . ,pn to label the nodes.

Namely, each ai is used to identify the nodes of Kwi (thus it holds

true only at the nodes of this structure) and each pi is used to se-

lect the truth value for variable xi . Essentially, for i ∈ [n], Kwi is a

tree such that: the only leaves that can be reached from node si are

those where pi holds and the only ones that can be reached from

node s̄i are those where pi does not hold. This can be exploited to

select the truth value for variable xi at the i−th step and thenmain-

tain it till the leaves are reached. This way we can get a valuation

for all the variables x1, . . . ,xn at the time points corresponding to

the leaves of Kw1 , . . . ,Kwn .

Formula transformation. The starting formulaψ is transformed

into a Ctlbdi formula where the universal quanti�cation over the
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Boolean variables is replacedwith the universal quanti�cation over

the paths, and analogously, the existential quanti�cation over the

Boolean variables with the existential quanti�cation over the paths.

Thus, the starting formulaQ1x1. . . . .Qnxn .φ is transformed into a

Ctlbdi formula of the formQ1© . . .Qn© φ ′ where φ ′ is obtained

from φ by replacing each occurrence of xi with bel(¬ai ∨ pi ).
2

Correctness of the reduction. Denoting ψ = Q1x1. . . . .Qnxn .φ a

quanti�ed Boolean formula and ψ ′
= Q1© . . .Qn© φ ′ the corre-

sponding Ctlbdi formula computed as described above, we show

thatψ is valid if and only ifMφ ,wn |= ψ ′.

First, assume thatψ is valid. Thus, there is a valuation ν ofψ that

makes the formula true. On the world wn we can replicate each

choice of ν for the existentially quanti�ed variables xi and main-

tain it in the corresponding world wi as observed before. More-

over, at the leave of any possible joint path (i.e., where the worlds

synchronize on the branching choices), it holds that bel(¬ai ∨ pi )

holds true if and only if we have selected pi true at the branching

corresponding to variable xi : in fact, ¬ai holds on all worlds ex-

cept for wi and pi holds at the reached leave of wi if we selected

the branch to si . Therefore, if ψ is valid, the formula ψ ′ holds on

Mϕ from worldwn
For the other direction we can reason similarly, and we omit it

here. Therefore, we get:

Lemma 6.4. The Ctlbdi model-checking problem is Pspace-hard.

Thus, by Lemma 6.3 and since Ctlbdi is a fragment of Ctl∗bdi,

the following theorem holds:

Theorem 6.5. The Ctlbdi and Ctl
∗
bdi model-checking problems

are Pspace-complete.

7 FIXED-POINT IMPLEMENTATION

We implemented algorithm Alg-Ctlbdi in Getafix [13], a model-

checker for (concurrent) Boolean programs that encodes the inputs

and the algorithms in a �xed-point calculus and then call the �xed-

point solverMucke [4] to evaluate it. We used the resulting proto-

type tool on simple benchmarks derived from the example given

in Section 2. Each experiment was performed in less than a second

and with negligible memory footprint.

More details will be given in a forthcoming extended version of

this paper. For example, the backend �xed-point engine (mucke)

uses BDD for the analysis and more care is required to determine

good variable orderings.

Henceforth we illustrate the encoding of Alg-Ctlbdi.

7.1 Fixed-point calculus

The calculus we use is a �rst-order variant of the µ-calculus that

has as operators Boolean combinations of sets, existential quanti�-

cation over the Boolean domain, and least �xed-point operators.

We start giving some notation.

A Boolean relation Rk (x1, . . . ,xk ) is any k-ary relation over the

Boolean domain B = {true, false}, for some k ∈ N, i.e., Rk ⊆ Bk .

Fix a set of variables V . A Boolean expression over V is given

by the following syntax:

2We abuse the notation and use the same symbol for both the variable quanti�cation
and the path quanti�cation.

BoolExp ::= T | F | Rk (x1, . . . ,xk ) | ¬BoolExp |

BoolExp ∧ BoolExp | BoolExp ∨ BoolExp |

∃x .(BoolExp) | ∀x .(BoolExp)

where x1, . . . ,xk are variables in V , and Rk denotes any k-ary

Boolean relation. The semantics of Boolean expressions is the stan-

dard one, and an expression de�nes somem-ary relation (wherem

is the number of free variables in the expression).

An equation over R is an equation of the form R = BoolExp.

Note that R may appear also in BoolExp and thus relations may be

de�ned recursively.

We recall that by Tarski’s �xed-point theorem [22], it follows

that any positive equation system (set of equations) has a unique

least �xed-point (and unique greatest �xed-point). That is, there

is a unique least interpretation for the relations that satisfy the

equations. We assume this interpretation as the semantics for the

relations de�ned in this calculus. More precisely, each relation R

in an equation system with R = B in it can be iteratively com-

puted as follows: we start by interpreting R as the empty set, we

then recursively evaluate the remaining equation system (after the

substitution of R with its current interpretation) obtaining an inter-

pretation for the other relations; we then substitute the relations

contained in B with the computed interpretations thus obtaining

the interpretation of R in the next iteration, and so on. The Tarski-

Knaster theorem says that such iterative algorithmwill always con-

verge to the least �xed-point of the relations when all the expres-

sions are positive. We observe that indeed this is the case for the

expressions we use in the encoding of our algorithm Alg-Ctlbdi.

7.2 Algorithm encoding

From each instance of the model-checking problem, we compute a

set of predicates. Namely, we have predicates: to denote the succes-

sors in the graph GM , to relate formulas to sub-formulas, and to

denote whether a sub-formula is an atomic proposition, the nega-

tion/disjunction of formulas, universally/existentially quanti�ed, a

next/until/belief/desire/intention formula. Formally, for a Ctlbdi

formula φ and a �nite-state structureM, we have:

(for vertices u,v , and atomic proposition p)

• Label(p,u) holds true i� p ∈ λM ;

• SuccT (u,v) holds true i� u is a temporal successor of v ;

• for K ∈ {B,D,I}, SuccK (u,v) holds true i� u is a K-

successor of v ;

(for each state sub-formulaψ of φ, where Q ∈ {∀,∃})

• Atomic(ψ ) holds true i�ψ is an atomic proposition;

• Neg(ψ ) holds true i�ψ is of the form ¬ψ ′;

• Or(ψ ) holds true i�ψ is of the formψ ′ ∨ψ ′′;

• Universal(ψ ) (resp., Existential(ψ )) holds true i�ψ is of

the form ∀ψ ′ (resp., ∃ψ ′);

• Next(ψ ) holds true i�ψ is of the form Q ©ψ ′;

• Until(ψ ) (resp., Sub(ψ ′
,ψ ′′
,ψ ) ) holds true i� ψ is of the

form Q(ψ ′Uψ ′′);

• Bel(ψ ) holds true i� ψ is of the form Bψ ′; analogously for

the predicates Des (desires) and Int (intentions);

• Sub(ψ ′
,ψ ) holds true i�ψ is of either one of the forms ¬ψ ′,

Q © ψ ′, Bψ ′, Dψ ′, Iψ ′, ψ ′ ∨ ψ ′′, or ψ ′′ ∨ ψ ′ (i.e., ψ ′ is a

direct state sub-formula ofψ );

• Sub(ψ ′
,ψ ′′
,ψ ) holds true i�ψ is of the form Q(ψ ′Uψ ′′).
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Λ(σ , ψ , u) := Λ
σ
at ∨ Λ

σ
¬ ∨ Λ

σ
∨ ∨ Λ

σ
∀©

∨ Λ
σ
∃©

∨ Λ
σ
∀U

∨ Λ
σ
∃U

∨ Λ
σ
B
∨ Λ

σ
D
∨ Λ

σ
I
where:

(1) Λ
0
at := Atomic(ψ ) ∧ ¬Label(ψ , u)

(2) Λ
1
at := Atomic(ψ ) ∧ Label(ψ , u)

(3) Λ
σ
¬ := Neg(ψ ) ∧ ∃ψ ′

.( Ready(ψ ′
, u) ∧ Sub(ψ ′

, ψ ) ∧ Λ(1 − σ , ψ ′
, u) )

(4) Λ
σ
∨ := Or(ψ )∧∃ψ ′

,ψ ′′
. (Ready(ψ ′)∧Sub(ψ ′

, ψ )∧Ready(ψ ′′)∧Sub(ψ ′′
, ψ )∧(Λ(σ , ψ ′

, u)oσΛ(σ , ψ
′′
, u)) ), where oσ is ∨ if σ = 1 and ∧ otherwise

(5) Λ
0
∃©

:= Existential(ψ ) ∧ Next(ψ ) ∧ ∃ψ ′
. ( Ready(ψ ′) ∧ Sub(ψ ′

, ψ ) ∧ ∀v . ( ¬SuccT (v, u) ∨ Λ(0, ψ ′
, v) ) )

(6) Λ
1
∃©

:= Existential(ψ ) ∧ Next(ψ ) ∧ ∃ψ ′
. ( Ready(ψ ′) ∧ Sub(ψ ′

, ψ ) ∧ ∃v . ( SuccT (v, u) ∧ Λ(1, ψ ′
, v) ) )

(7) Λ
0
∀©

:= Universal(ψ ) ∧ Next(ψ ) ∧ ∃ψ ′
. ( Ready(ψ ′) ∧ Sub(ψ ′

, ψ ) ∧ ∃v . ( SuccT (v, u) ∧ Λ(0, ψ ′
, v) ) )

(8) Λ
1
∀©

:= Universal(ψ ) ∧ Next(ψ ) ∧ ∃ψ ′
. ( Ready(ψ ′) ∧ Sub(ψ ′

, ψ ) ∧ ∀v . ( ¬SuccT (v, u) ∨ Λ(1, ψ ′
, v) ) )

(9) Λ
0
∃U

:= Existential(ψ ) ∧ Until(ψ )

∧ ∃ψ ′
, ψ ′′

. ( Ready(ψ ′) ∧ Ready(ψ ′′) ∧ Sub(ψ ′
, ψ ′′

, ψ ) ∧ Λ(0, ψ ′′
, u) ∧ (Λ(0, ψ ′

, u) ∨ ∀v . ( ¬SuccT (v, u) ∨ Λ(0, ψ , v) ) ) )

(10) Λ
1
∃U

:= Existential(ψ ) ∧ Until(ψ )

∧ ∃ψ ′
, ψ ′′

. ( Ready(ψ ′) ∧ Ready(ψ ′′) ∧ Sub(ψ ′
, ψ ′′

, ψ ) ∧ (Λ(1, ψ ′′
, u) ∨ (Λ(1, ψ ′

, u) ∧ ∃v . ( SuccT (v, u) ∧ Λ(1, ψ , v) ) ) ) )

(11) Λ
0
∀U

:= Universal(ψ ) ∧ Until(ψ )

∧ ∃ψ ′
, ψ ′′

. ( Ready(ψ ′) ∧ Ready(ψ ′′) ∧ Sub(ψ ′
, ψ ′′

, ψ ) ∧ Λ(0, ψ ′′
, u) ∧ (Λ(0, ψ ′

, u) ∨ ∃v . ( SuccT (v, u) ∧ Λ(0, ψ , v) ) ) )

(12) Λ
1
∀U

:= Universal(ψ ) ∧ Until(ψ )

∧ ∃ψ ′
, ψ ′′

. ( Ready(ψ ′) ∧ Ready(ψ ′′) ∧ Sub(ψ ′
, ψ ′′

, ψ ) ∧ (Λ(1, ψ ′′
, u) ∨ (Λ(1, ψ ′

, u) ∧ ∀v . ( SuccT (v, u) ∧ Λ(1, ψ , v) ) ) ) )

(13) Λ
0
B
:= bel(ψ ) ∧ ∃ψ ′

. ( Ready(ψ ′) ∧ Sub(ψ ′
, ψ ) ∧ ∃v . ( SuccB (v, u) ∧ Λ(0, ψ ′

, v) ) ) (similarly for desire and intention formulas)

(14) Λ
1
B
:= bel(ψ ) ∧ ∃ψ ′

. ( Ready(ψ ′) ∧ Sub(ψ ′
, ψ ) ∧ ∀v .( ¬SuccB (v, u) ∨ Λ(1, ψ ′

, v) ) ) (similarly for desire and intention formulas)

Figure 4: Formal de�nition of the relation Λ.

The above predicates can be automatically computed from a for-

mula and Boolean program representing a �nite-state structure.

We capture the labeling of GM by a relation Λ given by tuples

of the form (σ ,ψ ,u) where σ ∈ {0, 1} denotes that: the vertex u

is labeled by formula ψ , if σ = 1, and by formula ¬ψ , otherwise.

The formal de�nition of Λ is given in Figure 4 where we denote as

Ready(ψ ,u) the formula ∃σ .Λ(σ ,ψ ,u).

Among the de�ned predicates, Λ is the only recursive one and

is structured in disjuncts according to the type of the considered

sub-formula.

The recursive evaluation of Λ will start by adding the tuples

(σ ,ψ ,u) whereψ is an atomic proposition (Λσat is the only disjunct

that does not contain Λ). According to cases (1) and (2) of Figure

4, for a vertex u, this will add all the tuples (1,ψ ,u) such that ψ

labels u in GM and (0,ψ ,u) such that ψ does not. Note that after

this iteration Ready(ψ ) will hold true for all atomic propositions

and false for the other formulas.

In the following iterations, the other disjuncts will contribute

to add tuples over formula ψ as soon as the Ready predicate will

become true for the immediate sub-formulas of ψ . In fact, such

disjuncts are de�ned as the conjunction of two main parts: a �rst

part that checks the type of the formula, and a second part that

checks the semantics of the formula by its sub-formulas; in this

second part, a main conjunct checks that the labeling of the im-

mediate sub-formulas have been already computed (by the Ready

predicate) and the remain part ensures the semantics of ψ by the

�ndings about its sub-formulas.

The above reasoning can be formalized in a proof by induction

of the following result:

Lemma 7.1. For each sub-formulaψ of φ and each node u of GM :

• Λ(1,ψ ,u) holds true if and only if GM ,u |= ψ ;

• Λ(0,ψ ,u) holds true if and only if GM ,u |= ¬ψ .

Thus, we have the following theorem:

Theorem 7.2. Given a Ctlbdi formula φ, a �nite-state structure

M and a worldw ,

M,w |= φ i� Λ(1,φ,u) holds true

where u is the initial state of GM corresponding tow .

8 CONCLUSIONS

In this paper, we have introduced a notion of �nite-state structure

in the possible worlds semantics by Rao and George� [19, 20] and

studied the related model-checking problem against Ctlbdi and

Ctl
∗
bdi formulas. We have shown that these decision problems are

both Pspace-complete, and have implemented and evaluated on a

few benchmarks the Ctlbdi decision algorithm in Getafix [13].

Our results extend the decidability of the considered bdi logics to

systems that exhibit in�nitely many time points from the unrolling

of the �nite-state models.

As future research, we plan to investigate further the applica-

tions by running more experiments and implementing also our de-

cision algorithm for Ctl∗bdi. Concerning to this second aspect, we

observe that an implementation can be obtained by embedding the

Büchi automata for the Ltl formulas in the enconding for Ctlbdi.

We think that a more direct formulation may lead to better perfor-

mances. Further, we wish to extend our results to multi-agents and

modular systems where each world is composed of modules that

can call each other possibly recursively, similarly to what is done

for standard temporal logics (see [1, 2, 14]). This will give a more

faithful representation for many real systems and will yield more

succinct models (modules can be shared among worlds).
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