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Abstract—Swarm-based verification methods split a verifica-
tion problem into a large number of independent simpler tasks
and so exploit the availability of large numbers of cores to speed
up verification. Lazy-CSeq is a BMC-based bug-finding tool for C
programs using POSIX threads that is based on sequentialization.
Here we present the tool VERISMART 2.0, which extends Lazy-
CSeq with a swarm-based bug-finding method. The key idea of
this approach is to constrain the interleaving such that context
switches can only happen within selected tiles (more specifically,
contiguous code segments within the individual threads). This
under-approximates the program’s behaviours, with the number
and size of tiles as additional parameters, which allows us to vary
the complexity of the tasks. Overall, this significantly improves
peak memory consumption and (wall-clock) analysis time.

Video—https://youtu.be/m1GwUWCdxdI
Sources—https://www.southampton.ac.uk/∼gp1y10/cseq/

verismart.tgz
Index Terms—program analysis, verification, concurrency, se-

quentialization, swarm verification

I. INTRODUCTION

Swarm-based verification methods take advantage of the

large number of cores that are now available by splitting

a verification problem into a large number of independent

simpler tasks. They are effective when the “task swarm” can

be built cheaply and the resulting tasks are indeed simpler than

the original problem. For bug finding, only some of the tasks

that exhibit the bug need to be simpler, because the analysis

can be stopped as soon as a bug is found in one task.

This idea is explored by Holzmann et al. [6], who obtain

the tasks by randomizing and diversifying the search process

in SPIN (e.g., using different hash polynomials and search al-

gorithms), thus running different strategies over the same pro-
gram. We introduced a complementary swarm-based method

for finding bugs in multi-threaded programs [12] where the

same strategy is run over different variants of the original

program. Each variant is obtained from the original program

by enabling preemptions only within selected code segments

(tiles), thus capturing a subset of the program’s interleavings.

The variants can be built such that each interleaving of the

original program is captured by at least one verification task.

Here we describe the VERISMART 2.0 tool that implements

the swarm-based approach from [12] as an extension of Lazy-

CSeq [8], [10], a BMC-based tool for finding bugs in C

programs using POSIX threads. Lazy-CSeq uses lazy sequen-

tialization [9]: it first translates a multi-threaded C program P
into a nondeterministic sequential C program P ′ that preserves

reachability for all round-robin schedules with a given bound

on the number of rounds, and then exploits CBMC [3] as

sequential verification engine to analyze P ′. Experiments

show that the swarm-based approach can significantly improve

Lazy-CSeq’s peak memory consumption and (wall-clock) ver-

ification times, in particular for complex programs: on some

implementations of lock-free data structures, verification times

went from 8-12 hours down to 15-30 minutes, using only a

modest number (5-50) of processors.

VERISMART 2.0 is aimed at software developers that face

the challenging task of developing correct multi-threaded soft-

ware. It is implemented as stand-alone, command line tool, and

can thus be integrated into the normal development workflow.

In comparison to the early prototype used in [12] (in the

following referred to as VERISMART 1.0), VERISMART 2.0

reflects a major system refactoring and substantial extensions,

providing three main novelties. First, we added a verification

manager module that orchestrates all steps of the verification

process, and so frees the user from collecting intermediate

files, starting verification tasks, and collating results. Second,

we re-designed the old batch-style architecture, where all tasks

were generated before the verification could start, into an

incremental pipeline. This allows the verification manager to

control the task generation in a demand-driven fashion, and so

resolves a bottle-neck that chocked the prototype for problems

spawning a very large number of tasks. Third, we improved

the integration with the Lazy-CSeq sequentialization and can

now produce counterexamples for the original (multi-threaded)

program; however, we do not detail this feature here.

II. SWARM VERIFICATION VIA PROGRAM TILINGS

VERISMART 2.0 inherits the swarm-based bug-finding

methodology from VERISMART 1.0. We briefly recall the main

notions here. For a bounded multi-threaded program P , this

methodology relies on the generation of variants of P , and is

based on the notions of program tiling and tile selection.

a) Program tiling: A tiling of a thread t ∈ T is defined

[12], as a partition of t’s statements; each element of a tiling is

called tile. A tiling of a multi-threaded program P is a set of

thread tilings, one for each thread of P . Let ΘP = {Θt}t∈T

be a tiling of P . A z-selection of ΘP is a set {θt}t∈T where

θt ⊆ Θt contains exactly z tiles or it coincides with Θt if

|Θt| ≤ z, i.e., all tiles in the partition of t are selected if

there are at most z. For a z-selections of a given tiling ΘP of
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Fig. 1. VERISMART tool architecture.

P , a program variant Pϑ of P is obtained by instrumenting

P in a way such that each thread t can only be preempted

at statements belonging to the tiles of θt and at any other

blocking statement of t (in order to allow an execution to

continue when a statement is blocked and there are other

threads that are ready to execute). In VERISMART 2.0, we

use window tilings, where each tile contains only consecutive

statements of P . The size of a tile is the number of visible

statements that it contains; a statement is visible if it involves

an access to the shared memory or an invocation of a function

from the POSIX threads library.

b) Bounded round analysis and tile selection: Let k ∈ N

and ϑ be any z-selection of ΘP with z = �k
2 �. We recall

from [12] that to cover all of P ’s behaviors up to k context

switches, we need to consider all possible variants Pϑ of

P : in any interleaving with at most k context switches,

each thread is preempted at most �k
2 � times. A round is a

portion of computation where each thread is preempted at most

once. Since the context-bounded analysis of Lazy-CSeq is

parameterized over the number of rounds, in order to guarantee

that all of P ’s behaviors up to k rounds are covered, it suffices

to restrict the analysis to the set of k-selections of ΘP .

III. TOOL ARCHITECTURE

Figure 1 illustrates the architecture of VERISMART 2.0.

It comprises two main parts. The swarm construction takes

as input a multi-threaded program P along with additional

parameters, and generates a set of program variants. These

variants are fed into the verification manager that controls

the swarm construction and orchestrates the analysis possibly

using multiple cores. These two parts are set up as an

incremental pipeline where the program variants are generated

on demand.

a) Swarm construction: The inline/unwind module trans-

forms the input multi-threaded program P into a bounded

multi-threaded program P ′ by function inlining and loop

unwinding (up to a bound #unwinding, which is given as

input parameter). The resulting program has thus a different

thread function associated with each thread. We use a slightly

modified version of the existing inline/unwind module pro-

vided by the CSeq framework [10].

The configuration generator module takes the bounded

program P ′ and the tiling parameters (#tiles and

tile-size), and generates one or more configuration files,

each containing a list of tile selections encoded in JSON

format. It first computes the number of visible statements

for each thread of P ′, then determines a window tiling of

P ′ where each tile covers tile-size consecutive visible

statements (except for the last tile in each thread, which can

be shorter), and finally produces a list of #tiles-selections.

The tile selections can be generated deterministically and

exhaustively (all) or randomly and selectively (x-random).

Configuration files can be also provided externally as an input.

This enables the user to express any kind of tilings and

tile selections (e.g., selections of a window tiling with tiles

of different sizes) as the configuration file format allows to

disable preemptions at any chosen visible statement.

The sequentialization module sequentializes the bounded

program P ′ for each tile selection described in the con-

figuration file. This follows the approach in Lazy-CSeq [9]

except that it runs under control of the instance generator.

This ensures that numerical labels and related control code

are injected only at the visible statements indicated in the

tile selection. Since the numerical labels are used in this

sequentialization to control the simulation of preemptions, re-

stricting the injected control code only to the visible statements

within the selected tiles results in much smaller verification

conditions (i.e., SAT formulas) produced by the backend

verifier.

b) Verification: The verification subsystem analyzes each

generated program variant independently with the bounded

model-checker CBMC. This is orchestrated by the verification
manager, which launches the generated tasks in parallel, again

exploiting the number of specified cores. It also collects the

output of CBMC on all the variants asynchronously. As soon

as a counterexample is found, all the remaining tasks can be

aborted if specified by the user. Any counterexample found

in a program variant is mapped into a counterexample of the

original program P by the CEX module. This is implemented

by using the line map mechanism provided by the CSeq

framework [10]. Note that the generated tasks can in principle

be processed independently by any sequential verification tool

for C, but we tested VERISMART 2.0 only with CBMC v5.11.

c) Incremental pipeline: The sequentialized programs

can be generated in parallel, using the number of specified

cores. This is relatively fast compared to verification but since

the number of instances can grow very quickly, even a parallel

upfront generation of all instances can still lead to long delays

and out-of-memory errors before the verification phase itself

can actually start. VERISMART 2.0 therefore generates the

instances lazily, driven by the demand from the verification

manager (cf. the backward dashed arrows in Figure 1).

IV. TOOL IMPLEMENTATION

Like its predecessor, VERISMART 2.0 is implemented in

Python and uses the pycparser to parse a C program into

an abstract syntax trees (ASTs), and then executes the code-to-

code transformations described in Section III at the AST level.

VERISMART 2.0 also uses the Python multiprocessing
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library for managing a thread pool in the verification manager.

The thread pool is initially filled with the specified number

of verification jobs; this triggers the lazy generation of the

corresponding program variants. Each completed job is re-

moved from the pool and replaced by a job for the next—lazily

computed—variant.

V. TOOL USAGE AND ANALYSIS SCENARIOS

VERISMART 2.0 is called on the command line as

./verismart.py [options] file, where file
contains the C program to be analyzed. It produces a

configuration file FILE_auto_config.json and a

directory FILE.swarm with the sequentialized instance

files. For example,

./verismart.py ex/ex1.c

generates all possible five instances and runs the default veri-

fication backend. This finds a bug in the second configuration

attempted.

Compared to its predecessor, VERISMART 2.0 now provides

a refactored and more comprehensive set of options for the

user to easily manipulate the swarm verification process.

The number of threads that are started can be modified

with the --cores option (default: 4):

./verismart.py --cores 2 ex/ex1.c

only starts up two threads but this still finds the error quickly.

The tool implements several tiling techniques for the

thread code. The default tiling splits the code into windows

of the same size (possibly except for the last tile of each

thread). The window length can be specified with the

--window-length (or -l) option; the argument gives the

number of visible statements in the tile:

./verismart.py -l 2 ex/ex1.c

produces only three configurations but still finds the error.

Alternatively, the window length can be specified via the

--window-percent option as percentage of the threads’

length; this needs to be used with care because small per-

centages can lead to empty windows. This technique is very

useful when the sequentialized output has threads that differ

substantially in size.

The (maximum) number of tiles selected in each thread

can be controlled by the --picked-window (or -p) option:

./verismart.py -p 2 ex/ex1.c

picks two tiles in each thread, if the thread is long enough to

allow this, and so generates ten configurations, of which four

demonstrate the error. We can force the analysis to stop after

the first error using the --exit-on-error option; note that

other pending tasks may still finish (and so actually produce

multiple errors), due to delays in killing the processes.

The --shift-window option allows us to randomly shift

the windows up and down by half a window size. This has

empirically shown to lead to better results.

The number of configurations can grow large very

quickly, in particular for small window lengths and larger

numbers of picked windows; it can be limited with the

--instances-limit option:

./verismart.py --instances-limit 2 ex/ex1.c

Note that VERISMART 2.0 chooses random configurations if

the instance limit (which defaults to 100) is smaller than the

number of possible instances. Hence, different runs can yield

different results, and may fail to find the error, if any.

The tool also provides options to control the bounding

in Lazy-CSeq. --unwind<X> (or -u<X>) sets the unwind

bound for all loops, while --while-unwind<X> resp.

--for-unwind<X> (or -w<X> resp. -f<X>) set the un-

wind bounds for potentially unbounded resp. bounded loops.

--rounds<X> (or -r<X>) sets the number of round-robin

schedules. All bounds default to one. Similarly, the tool also

provides options to control the backend; the --help (or -h)

option lists them in more detail.

By default, VERISMART 2.0 manages the full verification

process: it generates the configuration and instance files, and

runs the verification backend over all instances on a single

machine. However, this can be changed: the tool can stop after

generating the configuration and instance files, respectively, so

that the verification can in a second stage be re-started on a

different machine (or at a later time); it can also generate a

set of configuration files that can then be used to run several

instances of VERISMART 2.0 in parallel, e.g., on a cluster.

Specifically, with the --config-only option, the tool

stops after writing the configuration file:

./verismart.py --config-only ex/ex1.c

Note that the contents of this file depend on any other control

parameters such as -l or -p. These configuration files can

then independently be used with the --config-file (or

-c) option to re-start the verification process; configuration

files can also be created manually or by other tools.

Similarly, with the --instances-only option,

VERISMART 2.0 stops after writing the instance files (i.e.,

the sequentialized program variants):

./verismart.py --instances-only ex/ex1.c

Finally, VERISMART 2.0 can also be used to generate a set

of configuration files, each describing the specified number

of configurations:

./verismart.py --cluster-config 2 ex/ex1.c

This can then be used in a second stage to run several instances

of the tool in parallel, each using the --config-file
option to read one of the generated configuration files and

then to generate and verify the described instances.

VI. RELATED WORK

Parallel Verification: Attempts to parallelize verification

by partitioning the problem and distributing the workload

have been implemented in explicit-state model checking [2],

[16] and SAT solving [13]. However, these suffer from the

overhead introduced by exchanging information between the

instances. Portfolio approaches that run several tools with

different strategies and heuristics in parallel on the unpar-

titioned problem have been more successful in automated
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theorem proving [14], [15] and SAT/SMT solving [18], [19].

Our approach leverages the swarm verification introduced

by Holzmann explicit-state model checking [6], [7], where

computing instances do not collaborate directly in finding a

solution, but solve independent subproblems that cover the

original problem. We lift this idea to symbolic model checking

through sequentialization.

Concurrency testing: Automated testing tools such as

CHESS [11] have been very successful for finding concurrency

bugs in large code bases because of their ability to handle code

independently of its sequential complexity. Nonetheless, their

success depends on the proportion of schedules that lead to

a bug w.r.t. the total number of schedules, as shown by a

recent empirical study [17] on testing of concurrent programs.

Preemption sealing [1] consists of inhibiting preemptions in

some program modules which corresponds in our approach

to choose a tiling where tiles exactly correspond to program

modules. This strategy was aimed to tolerating errors for find-

ing more ones and compositional testing of layered concurrent

systems. The uniform tiling we use is irrespective of the

structure of the program and looks more appropriate for an

exhaustive bug-finding search up to a given number of context-

switches. There are also differences in the implementation of

the two techniques, we do not seal portions of code with

scope functions but rather we implement tiles statically, that

in general makes the underlying BMC analysis simpler.

In analogy to concolic testing [4], our approach could

be called randolic testing, as it combines randomness and

symbolic representation of non-determinism; in fact, it enables

us to fine-tune randomness and nondeterminism used for the

analysis by varying the tile sizes and the way instances are

selected. On one end, tiles cover only a single visible statement

and our approach can be seen as symbolic random testing,

where only randomness is used for the analysis. On the other

end, the entire thread is treated as a tile and our approach can

be seen as BMC, where only nondeterminism is used.

VII. DISCUSSION AND CONCLUSIONS

As already demonstrated in [12], VERISMART’s main

strength is its ability to handle benchmarks with rare bugs that

are “out of reach” for other tools based on testing and BMC.

For programs with rare concurrency bugs, most instances

do not contain a bug and the analysis is time-consuming.

However, in tasks that do, the bugs are generally more frequent

than in the original program and thus can be found faster and

with fewer resources. VERISMART 2.0 improves over VERIS-

MART 1.0 in the way the program variants are generated, but

it ultimately produces the same program variants from the

same inputs. Therefore, it retains the bug-finding ability of

VERISMART 1.0. In fact, the results of the backend analysis

are the same as those reported in [12] for VERISMART 1.0.

The main improvement in VERISMART 2.0 is that veri-

fication now starts as soon as the first variant is generated

while VERISMART 1.0 first generated all the variants up to

the given bound before starting verification. This has two main

advantages. First, since the analysis can be stopped as soon

as a bug is found, VERISMART 2.0 can save the potentially

significant time spent on generating the remaining variants.

Second, guessing an appropriate number of variants to be

generated was crucial in VERISMART 1.0 to ensure that if the

program has a bug, one of the generated variants will exhibit

it. This has become almost irrelevant in VERISMART 2.0 since

we can now go on generating variants until a bug is found.

VERISMART 2.0 can now also be used to orchestrate

(sequential and) parallel verification over all cores of a single

computer; it can already prepare the jobs for use on a cluster,

but the verification manager does not yet distribute them over

an entire cluster; this work is currently in progress. We are also

working on a variant that uses testing instead of a bounded

symbolic analysis; this may scale easier to large programs but

may need (many) more instances to find a bug.
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