CBMC-SSM: Bounded Model Checking of C Programs with
Symbolic Shadow Memory

Bernd Fischer
Stellenbosch University
Stellenbosch, South Africa
bfischer@sun.ac.za

Gennaro Parlato
University of Molise
Pesche, Italy
gennaro.parlato@unimol.it

ABSTRACT

Dynamic program analysis tools such as Eraser, TaintCheck, or
ThreadSanitizer abstract the contents of individual memory loca-
tions and store the abstraction results in a separate data structure
called shadow memory. They then use this meta-information to
efficiently implement the actual analyses. In this paper, we describe
the implementation of an efficient symbolic shadow memory ex-
tension for the CBMC bounded model checker that can be accessed
through an API, and sketch its use in the design of a new data race
analyzer that is implemented by a code-to-code translation.
Artifact/tool URL: https://doi.org/10.5281/zenodo.7026604

Video URL: https://youtu.be/pqlbyiY5BLU

ACM Reference Format:

Bernd Fischer, Salvatore La Torre, Gennaro Parlato, and Peter Schrammel.
2022. CBMC-SSM: Bounded Model Checking of C Programs with Symbolic
Shadow Memory. In 37th IEEE/ACM International Conference on Automated
Software Engineering (ASE °22), October 10—14, 2022, Rochester, MI, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3551349.3559523

1 INTRODUCTION

Program analysis tools for memory-related properties track meta-
information for each memory location and update this as they an-
alyze the unit under test (UUT). For example, Eraser [9] tracks
the locks held when each memory location is accessed, while
TaintCheck [7] tracks which memory locations contain values that
are derived from untrusted sources.

Dynamic analysis tools often store the meta-information in a
shadow memory, a data structure that is invisible to the UUT but
can be efficiently accessed by the tool through the UUT’s (original)
memory addresses. For example, Eraser’s “half-and-half” implemen-
tation confines the UUT to the lower half of the system’s memory
while the shadow memory occupies the upper half; the access to the
shadow memory then simply flips the top bit of any given address.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9475-8/22/10.

https://doi.org/10.1145/3551349.3559523

Salvatore La Torre
University of Salerno
Fisciano, Italy
slatorre@unisa.it

Peter Schrammel
University of Sussex and Diffblue Ltd
Brighton and Oxford, UK
p-schrammel@sussex.ac.uk

The shadow memory concept simplifies many dynamic program
analyses. We believe that it can also be useful for static program
analyses, in particular for SAT-based bounded model checking (BMC)
tools, but it has not been widely explored there yet. Here we de-
scribe and demonstrate CBMC-SSM, a symbolic shadow memory
extension of CBMC [3]. More specifically, we introduce in Section 2
a symbolic shadow memory API that allows us to transparently
manipulate shadow variables directly within the input C program,
while keeping overheads in the generated SAT formulas low.

The shadow memory extension is particularly useful for de-
signers and developers of program analysis and verification tools,
because it enables them to make CBMC handle a wider range of
properties over sequential and concurrent programs without hav-
ing to modify CBMC. Effectively, this enables them to turn CBMC
into a programmable program analysis machine; however, the ap-
proach is not fundamentally limited to CBMC but applies to other
BMC tools as well, e.g., ESBMC [4]. The implementation of a new
analysis with CBMC-SSM follows a generic two-stage approach. In
the first stage, developers implement the analysis as a code-to-code
translation, but use the API to maintain the analysis results in the
shadow memory. In the second stage, CBMC-SSM is used to analyze
this program version. We illustrate this approach in Section 3 with
a simple taint analysis example.

We have used CBMC-SSM to implement a full-fledged data race
analysis for C-programs. The implementation builds on our Lazy-
CSeq transformation framework [5, 6] and requires only about
600 lines of Python code (see Section 5 for more details). In the
SV-COMP 2022 data race benchmarks, it found true races in 66 of
the 76 benchmarks with races, and correctly identified 70 of the
78 race-free benchmarks, with only two false negatives and no
false alarms, and outperformed custom-developed static data race
detectors such as ThreadSanitizer [11] and POR-SE [10].

2 A SYMBOLIC SHADOW MEMORY API

The design of the symbolic shadow memory needs to balance ef-
ficiency and simplicity. At the one extreme, we can implement
and “seal” it inside CBMC, and implement the custom analysis
as a CBMC extension that directly works with this sealed imple-
mentation. This means that we effectively implement a one-off
custom variant of CBMC that can be used as a black box to analyze
unchanged programs. The tight integration of CBMC, shadow mem-
ory, and custom analysis ensures efficiency, but CBMC’s complex


https://orcid.org/0000-0002-1815-218X
https://orcid.org/0000-0002-4978-4307
https://orcid.org/0000-0002-8697-2980
https://orcid.org/0000-0002-5713-1381
https://doi.org/10.5281/zenodo.7026604
https://youtu.be/pqlbyiY5BLU
https://doi.org/10.1145/3551349.3559523
https://doi.org/10.1145/3551349.3559523

ASE 22, October 10-14, 2022, Rochester, MI, USA

architecture makes the implementation cumbersome and difficult
to adapt or reuse for other analyses.

At the other extreme, we can represent the shadow memory
explicitly at the source level, through additional program variables,
and formulate the custom analysis as a code-to-code translation that
inserts code to declare and update the program variables represent-
ing the shadow memory. We can then use CBMC as an off-the-shelf
symbolic analysis tool to analyze the instrumented program. This
separation of concerns simplifies the implementation and increases
reusability, but the explicit representation of the shadow memory
at the source level increases the size and complexity of both the
program and the generated SAT formulas.

We can, however, get both efficiency and simplicity if we main-
tain the meta-level nature of the shadow memory and bypass its
handling by CBMC, but allow the programmatic manipulation of
the shadow memory at the source level. This is the purpose of
the shadow memory API we introduce here. Its basic idea is that
an analysis declares the shadow memory fields of the types that it
needs, and then uses a single generic getter/setter pair to access and
update these fields. Since we assume that the API is used primarily
by program transformations implementing custom analyses, we do
not provide many convenience methods; instead we keep the API
to the following four primitives.

void __CPROVER_field_decl_global(const char™ name, char init)
and void __ CPROVER_field_decl_local(const char* name, char init),
respectively, declare a shadow memory field with the given name
and initial value /nit, with the type given by a cast as part of the
expression /nit, that is allocated for each global (i.e., global variable,
static variable, or dynamically allocated memory block) and local
(i-e., local variable or parameter) memory object, respectively.

char __CPROVER_get_field(void* address, const char* name)
returns the value of the shadow memory field name associated
with the memory object at the given address. The returned value
can be cast into the type given by the corresponding shadow field
declaration call.

void _ CPROVER_set_field(void* address, const char® name,
char value) sets the value of the shadow memory field name associ-
ated with the memory object at the given address. value is cast to
the type given by the corresponding shadow field declaration call.

The split into global and local scopes allows us to define different
fields for different classes of memory objects. This is useful for
analyses where only global objects need to be tracked (e.g., data
race analysis). Note, however, that information flow analyses (e.g.,
taint analysis) require all objects to be tracked, and thus require
two declarations with the same field name (see Fig. 1, lines 46—47).

3 ILLUSTRATIVE EXAMPLE

In Figure 1, we show how we can use the shadow memory API for
a simple taint analysis. The example code constructs an untainted
(uname) and a tainted (passwd) string (lines 20-27 and 50-51),
packs them into a JSON-formatted composite string (lines 12-19),
and then checks that the taint has not infected the untainted parts
of the composite string (lines 28—43). Note that simply tracking the
taint status of the entire string will yield a false alarm because it is
composed from tainted and untainted sources.

@
&

s
=

Bernd Fischer, Salvatore La Torre, Gennaro Parlato, and Peter Schrammel

extern int nondet_int ();

int append(char «buf, int pos, char «src){
int len = strlen(src);
for (int i=0; ++1) {
buf[pos + i] = src[i];
// propagate taint
__CPROVER_set_field(&buf[pos + i], "tainted",
__CPROVER_get_field(&src[i], "tainted"));

i<len;

}

return pos + len;
}

void encode(char «buf, char suname, char «passwd){

int pos = append(buf, 0, "{\"username\":\"");
pos = append(buf, pos, uname);

pos = append(buf, pos, "\" ,\"password\":\"");
pos = append(buf, pos, passwd);

pos = append(buf, pos, "\"}");

buf[pos] = "\0"';

}

void make_nondet_len_string (char «buf,
int len = nondet_int ();
__CPROVER _assume (0 <= len &% len < 8);
buf[len] = "\0';
// taint the input data
for(int i=0; i<len; ++i)
__CPROVER_set_field(&buf[i],

_Bool taint){

"tainted", taint);

}
int check_part(char «buf,
int len = strlen(src);
for(int i=0; i<len; ++i) {
_Bool actual = __CPROVER_get_field(&buf[pos + i],
assert(actual == expected);
}

return pos + len;
}

void check(char «buf, char +uname, char «passwd){

int pos, char =src, _Bool expected){

"tainted");

int pos = check_part(buf, 0, "{\"username\":\"", 0);
pos = check_part(buf, pos, uname, 0);
pos = check_part(buf, pos, "\" \"password\":\"", 0);
pos = check_part(buf, pos, passwd, 1);
pos = check_part(buf, pos, "\"}", 0);
check_part(buf, pos, "\0", 0);

}

void main (){
// declare shadow fields
__CPROVER_field_decl_local("tainted", (_Bool)0);

__CPROVER_field_decl_global (" tainted",
// create harness for SUT

char uname [8]; char passwd[8];
make_nondet_len_string (uname, 0);
make_nondet_len_string (passwd, 1);
// call SUT

char json[46];

encode(json , uname, passwd);

// check properties

check(json ,

(_Bool)0);
// untainted
// tainted
uname, passwd);

Figure 1: Taint analysis using shadow memory APIL

For the analysis, we declare a shadow field “tainted” that tracks
the taint status of each allocated memory location in a single
zero-initialized bit (lines 46-47). These bits are updated via the

__CPROVER_set_field method whenever the shadowed objects

are updated (lines 7-8). Note that in order to simplify the pre-
sentation here we only show the updates for the shadow fields
attached to the character arrays; a full taint analysis must also add
updates for all local variable writes. However, since the shadow
memory declarations and operations are inserted automatically by
a source-to-source transformation implementing the taint analysis,
this imposes no specification burden on the user.



CBMC-SSM: Bounded Model Checking of C Programs with Symbolic Shadow Memory

Note also that__ CPROVER_set_fieldand __ CPROVER_get_field
access the shadow memory via the addresses of the shadowed ob-
jects. This enables CBMC to precisely track the taint status of each
individual object in the presence of aliasing, pointers, and complex
array indexing operations (see for example line 7).

4 CBMC-SSM IMPLEMENTATION

Shadow memory model C’s low-level memory model that al-
lows aliasing and pointer arithmetics requires that the shadow
memory is kept separate from (rather than integrated with) the ob-
ject memory, in order to maintain CBMC’s precision. For efficiency
reasons, the structure of the shadow memory should be aligned
with CBMC’s underlying memory model. CBMC employs a hetero-
geneous, object-based memory model, where symbolic addresses
are represented as pairs (object identifier, offset within object)—as
opposed to for example an untyped, array-based memory model,
where addresses are non-deterministically chosen integers [12]. We
allocate for each declared field and each shadowed object a shadow
object of the same size and structure, and thus get the same offsets
to address the elements within that block of memory. This both
simplifies and optimizes mapping a pointer into a shadowed object
(i.e., the symbolic address of a shadowed object and the symbolic
offset within that object) to a corresponding pointer into the shadow
memory object since CBMC-SSM can use CBMC’s code to com-
pute the object identifiers as well as the symbolic (i.e., SAT-level)
representation of the corresponding offset.

In order to fully account for byte-level aliasing (e.g., a write into
a byte array aliased with an integer, which taints an individual
byte in the integer), CBMC-SSM replicates the shadow memory
for each individual byte of the shadowed object and implements
a scatter-gather style access: the setter writes into all replicated
copies while the getter returns their aggregated values.

As consequence of this approach, the size of the shadow fields
cannot be larger than that of the shadowed objects; in order to
simplify the access code into the shadow memory, we even restrict
the size of the shadow fields to a single byte. As further consequence,
we support individual shadowing only for byte-addressable objects.

Declaration The API functions __ CPROVER_field_decl_global
and __CPROVER_field_decl_local define shadow memory fields
that are allocated for each respective memory object. The second
parameter specifies the initial value, but indirectly also determines
the type of the shadow memory field, which is required by CBMC
to produce the correct SAT-formula. Our implementation currently
supports signed or unsigned types with up to eight bits width, e.g.,

__CPROVER:_field_decl_global(“enabled”, (_Bool)0);
__CPROVER_field_decl_global(“counter”, (char)0);
__CPROVER_field_decl_global(

“stat”, (unsigned __ CPROVER_bitvector[3])0);

where __ CPROVER_bitvector[n] is an n-bit primitive data type pro-
vided by CBMC. All field declarations must appear at the beginning
of the entry point of the main function.

Setter The API function void __CPROVER_set_field sets the value
of the shadow memory object addressed by the given pointer (of
type base_type*) for the given field. If the pointer cannot be deref-
erenced (i.e., it is NULL or statically determined to be invalid) then

ASE ’22, October 10-14, 2022, Rochester, MI, USA

the statement will be ignored with a warning. The shadow memory
will be set to value for all sizeof(base_type) bytes starting from the
address given by the value of the pointer. CBMC-SSM aborts if
the field has not been declared, or if base_type is void or an array
type. For example, assuming x and s.sub.y are both of type int, the
following calls succeed:

_ CPROVER_set_field(&x, “enabled”, 1);
__CPROVER:_set_field(&(s.sub.y), “counter”, 5);
__CPROVER_set_field(&(s.sub), “stat”, 3);

Getter The API function __ CPROVER_get_field returns the value
of the shadow memory object addressed by the given pointer (of
type base_type™) for the given field. CBMC aborts if the field has
not been declared, or if base_type is void. Also note that base_type
cannot be an array type (as types for pointers to arrays or scalars
cannot be syntactically distinguished in C) but can be a struct or
union containing an array member.

If the pointer cannot be dereferenced the field’s declared initial
value is returned. If the pointer is valid then the return value is
composed from the sizeof(base_type) bytes starting from the address
given by the value of the pointer. The composition operations are
logical or for shadow fields of type _Bool and max for other types.
For example, if x is a base type and enabled is declared as above,
the return value enabled of the call

_Bool x_enabled = (_Bool)__CPROVER_get_field(&x, “enabled”);

is the logical or over the values stored in the shadow memory bytes
corresponding to the bytes of x. Likewise, assuming s.sub is of type
struct sub_data, the return value s_sub_stat of the call

unsigned __CPROVER_bitvector[3] s_sub_stat =
(unsigned __CPROVER_bitvector[3])
__CPROVER_get_field(&(s.sub), “stat”);

is the maximum of the values stored in the shadow memory bytes
corresponding to the bytes of s.sub.

This composition handles aliasing, where parts of the shadow
memory can be modified through a different address, and propa-
gates shadow memory updates from individual members to their
enclosing (sub-) structures. Hence, we can retrieve the shadow
value by accessing any of the constituting bytes, which is needed
for a reasonable shadow memory semantics of unions and bitfields.

Symbolic Execution The shadow memory API calls are inter-
preted by the symbolic execution phase of CBMC, which unwinds
the program’s control flow graph a bounded number of times. This
results in a single static assignment representation. This is then
encoded into a propositional formula by bitblasting such that the
formula is satisfiable if and only if an assertion in the program fails.
This is determined by passing the formula to a SAT solver.

Usage CBMC-SSM is a drop-in replacement for CBMC and takes
the same command-line arguments as the original CBMC. It auto-
matically handles all calls to the shadow memory API described
earlier. We can thus analyze our taint analysis example in Fig. 1 us-
ing the command cbmc-ssm example.c --unwind 15, assuming that
the code in Fig. 1 is in file example.c. The longest loop in the exam-
ple requires 15 iterations, thus we can safely bound loop unwinding
with -—unwind 15. CBMC reports VERIFICATION SUCCESSFUL
within a fraction of a second, which shows that the code does not
assign any tainted values to untainted variables.



ASE 22, October 10-14, 2022, Rochester, MI, USA

5 DATA-RACE DETECTION USING CBMC-SSM

We used the CBMC-SSM API to design and implement, in less than
four weeks, a full-fledged data race analyzer for multi-threaded C
programs. This finds data races under an interleaving semantics,
i.e., when two threads access the same shared memory location im-
mediately subsequently, the accesses can non-deterministically be
executed in either order, and at least one access is a write operation.

This approach only requires a shadow bit for each shared mem-
ory location and a few auxiliary flags. More specifically, we non-
deterministically select an arbitrary interleaving where the last
statement of a context C; writes to an arbitrary shared location ¢,
and record in the shadow memory for ¢ that this location represents
the “write part” of the data race, by setting the shadow flag to true.
We then confirm the data race by checking via the shadow mem-
ory that the first statement of the interleaving’s next (non-empty)
context Cs also accesses the same location ¥.

This combination of shadow memory and non-determinism
(which allows us to “pick” the right variable and context switches)
frees us from having to encode more complex deterministic data
structures at the SAT formula level. This in turn offsets the costs
of the injected updates to the shadow memory and control flags
and results in a scalable solution. In particular, our prototype im-
plementation found true races in 66 of the 76 benchmarks with
races from the SV-COMP 2022 data race benchmarks, and correctly
identified 70 of the 78 race-free benchmarks, with only two false
negatives and no false alarms, and outperformed custom-developed
static data race detectors such as ThreadSanitizer and POR-SE.

We leveraged the Lazy-CSeq transformation framework [5, 6] to
inject the control code that manipulates the shadow memory and
auxiliary flags. This allowed us to quickly test out several design
alternatives, and made the code very compact—the implementation
handles the entire C-syntax in about 600 lines of Python code.

6 RELATED WORK

With the dramatic improvements in SAT solving, SAT-based BMC
tools (e.g., CBMC or ESBMC [4]) and symbolic execution engines
(e.g., Klee [2]) have become widely used software engineering
workhorses. However, very few of these tools support a shadow
memory. UC-Klee [8] is a Klee extension that uses the shadow mem-
ory to track whether each symbolic input byte is under-constrained
or fully constrained, similar to the taint analysis sketched in Sec-
tion 3. Unfortunately, it does not provide an API but seals the
implementation inside Klee, and thus remains difficult to extend
to other applications. Without an API to programmatically manip-
ulate the lower-level formula representation, developers typically
resort to writing an interpreter for their new analysis at the source
code level (e.g., the sequentialization techniques for weak memory
models [13, 14]), making the underlying tool a meta-interpreter.
We believe that symbolic shadow memory API enables a more sys-
tematic and more efficient approach to extending such tools. Sys
[1] provides a very rich API in form of a complex domain-specific
language and has been used to build a number of specialized sym-
bolic analyses. However, it is based on a flat memory model, where
as the heterogeneous memory model employed by CBMC and top-
performing BMC tools makes an integration more difficult and
favors a simpler API as the one we propose here.

Bernd Fischer, Salvatore La Torre, Gennaro Parlato, and Peter Schrammel

7 CONCLUSIONS

The notion of shadow memory has found wide use as a design
pattern for building dynamic program analysis tools. In this pa-
per, we transferred it to SAT-based BMC tools, and introduced the
complementary notion of symbolic shadow memory that allows
a user program to transparently manipulate shadow variables di-
rectly within the input C program, while keeping overheads in the
generated SAT formulas low. We extended CBMC with a symbolic
shadow memory, and discussed how this can be used to perform
taint analysis and data race detection with little effort.

We believe that the symbolic shadow memory concept intro-
duced here enables a generic approach to leveraging the impressive
capabilities of existing SAT-based bounded program analysis tools
to quickly create new symbolic analysis tools for a wide range of
properties over sequential and concurrent programs—effectively,
it allows us to turn tools like CBMC into programmable program
analysis machines.

We plan to explore this new tool design space in future work. We
have already prototyped a range abstraction, a weak memory model
verifier based on sequentialization, and partial order reductions for
symbolic explorations. We believe that this can also be used.

Acknowledgments This work was partially supported by INDAM-
GNCS 2020-2022 and 2021 Visiting Professor grants, and by AWS
2021 Amazon Research Awards.

REFERENCES

[1] F. Brown, D. Stefan, and D. R. Engler. Sys: A static/symbolic tool for finding
good bugs in good (browser) code. USENIX Security Symp., pp. 199-216. USENIX
Assoc., 2020.

[2] C.Cadar, D. Dunbar, and D. R. Engler. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. OSDI, pp. 209-224. USENIX
Assoc., 2008.

[3] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
TACAS, LNCS 2988, pp. 168-176, 2004.

[4] L. C. Cordeiro, B. Fischer, and J. Marques-Silva. Smt-based bounded model
checking for embedded ANSI-C software. IEEE Trans. Software Eng., 38(4):957—
974, 2012.

[5] O.Inverso, T. L. Nguyen, B. Fischer, S. La Torre, and G. Parlato. Lazy-CSeq: A
context-bounded model checking tool for multi-threaded C-programs. ASE, pp.
807-812. IEEE Comp. Soc., 2015.

[6] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato. Bounded
model checking of multi-threaded C programs via lazy sequentialization. CAV,
LNCS 8559, pp. 585-602. Springer, 2014.

[7] J. Newsome and D. X. Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. NDSS.
The Internet Society, 2005.

[8] D.A.Ramos and D. R. Engler. Under-constrained symbolic execution: Correctness
checking for real code. USENIX Security Symp., pp. 49-64. USENIX Assoc., 2015.

[9] S.Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst., 15(4):391-411, 1997.

[10] D. Schemmel, J. Biining, C. Rodriguez, D. Laprell, and K. Wehrle. Symbolic

partial-order execution for testing multi-threaded programs. CAV, LNCS 12224,

pp. 376-400. Springer, 2020.

K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov. Dynamic race de-

tection with LLVM compiler - compile-time instrumentation for ThreadSanitizer.

Runtime Verification, LNCS 7168, pp. 110-114. Springer, 2011.

C. Sinz, S. Falke, and F. Merz. A precise memory model for low-level bounded

model checking. Worksh. Systems Software Verification. USENIX Assoc., 2010.

[13] E.Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Lazy
sequentialization for TSO and PSO via shared memory abstractions. FMCAD, pp.
193-200. IEEE, 2016.

[14] E.Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. La Torre, and G. Parlato. Using
shared memory abstractions to design eager sequentializations for weak memory
models. SEFM, LNCS 10469, pp. 185-202. Springer, 2017.

—_
jan

[12



	Abstract
	1 Introduction
	2 A Symbolic Shadow Memory API
	3 Illustrative Example
	4 CBMC-SSM Implementation
	5 Data-race detection using CBMC-SSM
	6 Related work
	7 Conclusions
	References

