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Abstract. We present a novel automata-based approach to address
linear temporal logic modulo theory (LTLMT

f ) as a specification lan-
guage for data words. LTLMT

f extends LTLf by replacing atomic
propositions with quantifier-free multi-sorted first-order formulas in-
terpreted over arbitrary theories. While standard LTLf is reduced to
finite automata, we reduce LTLMT

f to symbolic data-word automata
(SDWAs), whose transitions are guarded by constraints from under-
lying theories. Both the satisfiability of LTLMT

f and the emptiness of
SDWAs are undecidable, but the latter can be reduced to a system
of constrained Horn clauses, which are supported by efficient solvers
and ongoing research efforts. We discuss multiple applications of our
approach beyond satisfiability, including model checking and run-
time monitoring. Finally, a set of empirical experiments shows that
our approach to satisfiability works at least as well as a previous cus-
tom solution.

1 Introduction
Linear Temporal Logic (LTL), pioneered by Pnueli in 1977 [47], pro-
vides a powerful framework for analyzing temporal properties of dy-
namic systems, including computer programs, hardware, and proto-
cols. Its applications include model checking and synthesis of digi-
tal circuitry, program verification, cybersecurity, and robotics. While
standard LTL assumes an infinite sequence of observations (which is
not always appropriate), LTLf , introduced by De Giacomo and Vardi
in 2013 [12], focuses on finite traces instead. Since then, LTLf has
gained prominence in AI and business process modeling [13].

Both LTL and LTLf are tailored for reasoning about system be-
haviors defined using propositional logic formulas with Boolean
variables—representing states or events. They cannot natively han-
dle systems with data, whose states may involve variables from com-
plex domains like integers or real numbers. To address this limitation,
more expressive logics, such as first-order theories, may be required
to specify properties of real-world systems operating on data.

We consider LTLMT
f , an extension of LTLf where atomic proposi-

tions are replaced by quantifier-free multi-sorted first-order formulas
interpreted over arbitrary theories. This extension is a fragment of the
logic introduced by Geatti et al. [27] and aligns with a recent effort
on extending Monadic Second Order (MSO) logic to data trees [19].
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1 Equal contribution.

LTLMT
f can express temporal properties of infinite-state systems de-

scribed by numerical variables. Notably, it allows the specification of
relationships between the current and next values of a state variable,
a powerful feature that renders the logic undecidable. For instance,
the formula G(⃝∼ x = x + 1) signifies the constant increase of the
variable x at each time step until the end of the finite trace.

We present a unifying and general framework to tackle vari-
ous problems related to LTLMT

f using symbolic data-word automata
(SDWAs) and on constrained Horn clauses (CHCs). SDWAs extend
finite automata (FAs) by equipping states and alphabet with val-
ues taken from possibly infinite domains, and their transitions are
guarded by formulas taken from quantifier-free first-order theories.
Notably, the emptiness of SDWAs can be reduced to the satisfia-
bility of CHCs, a type of logic that has proven successful in pro-
gram verification [5]. Efficient algorithmic solutions and tools for
CHCs continue to improve, as witnessed by the competition CHC-
COMP [22]. Our reduction to SDWAs, akin to the classical automata-
theoretic approaches to linear temporal logic, enables us to address
diverse decision problems for LTLMT

f .
First, we handle the satisfiability problem for LTLMT

f , an unde-
cidable problem that can be reduced to the emptiness problem for
SDWAs, and subsequently to the satisfiability problem of CHCs
through the previously mentioned constructions. This enables the uti-
lization of efficient procedures offered by various solvers, including
the SMT solver Z3 [14]. We implemented our approach in a proto-
type tool and used it to assess the satisfiability of a benchmark set,
which includes cases used in [27] and our running example. Geatti et
al. [27] exclusively concentrate on satisfiability, presenting a sound
and incomplete procedure for LTLMT

f . They employ a tableau origi-
nally introduced for LTL by Reynolds [48], iteratively unfolding for
an increasing number of steps. Its status is checked at each itera-
tion using an SMT solver. While their approach adeptly handles the
logic’s time dimension, it lacks the capability to exploit the fixpoint
features of modern CHC solvers. Consequently, contradictory tem-
poral requests cannot be detected without a fixed horizon, as illus-
trated by the formula GANDF in Section 7. Overall, our experiments
demonstrate that our approach handles all benchmarks belonging to
our fragment, showcasing similar or superior performance compared
to the tool implementing the approach of [27].

As a second application of our framework, we delve into the
model-checking problem for infinite state-transition systems against
LTLMT

f specifications. Remarkably, to the best of our knowledge, this
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problem has not been explored in the existing literature. Leveraging
the closure of SDWAs under intersection, we can model the state-
transition system itself as an SDWA, allowing us to intersect it with
the SDWA derived from the negation of the specification, and sub-
sequently check its emptiness. Given that the emptiness problem is
addressed through CHC solving, we can again employ this efficient
technology to resolve the model-checking problem, marking a sig-
nificant advancement in this unexplored domain.

In the final application of our automata-based framework, we fo-
cus on the implementation of runtime monitors for LTLMT

f specifi-
cations. These monitors serve to evaluate the correctness of a spe-
cific run based on log files or on-the-fly assessments. Our solution
provides both preliminary and final verdicts, where a final verdict
indicates that no change in the evaluation of the specification can
occur. Such early termination (a.k.a. anticipatory monitoring [38])
is clearly desirable for performance reasons. Our approach involves
tracking the state of the SDWA corresponding to the given specifica-
tion and solving two CHC instances derived from the current state of
the monitor. We also suggest more scalable solutions by employing
over-approximations, albeit with slightly reduced precision.

Our technical contributions can be summarized as follows:

• We enhance a previously established automata construction de-
signed for LTLMT

f monitoring and linear arithmetic (refer to [23])
by incorporating an off-the-shelf LTLf procedure and tool, specif-
ically SPOT [18].

• We introduce SDWAs as a state-based representation of the syn-
tactically convenient LTLMT

f , and demonstrate its versatility across
multiple applications.

• We leverage the connection between SDWAs and CHCs, illustrat-
ing that modern CHC solvers can effectively address fundamental
problems related to LTLMT

f .
• We present a series of satisfiability experiments showing that the

CHC-based approach is simpler and more general than a previ-
ous custom approach (see [27]) but also exhibits comparable effi-
ciency.

Supplementary material is in the technical report [21].

2 Data Words
In this section, we introduce data words that we use to represent ex-
ecutions involving variables with unbounded values.

Given two integers i, j, with i ≤ j, we denote by [i, j] the set of
integers k satisfying i ≤ k ≤ j, and by [j] the set [1, j].

Data signatures and data alphabets. A data signature S is a set
of pairs {id i : typei}i∈[n], where id i is a field name, and typei is
the type of id i. Common types include integers, floating point ra-
tionals and real numbers, the Boolean type B and the bit vectors of
fixed length. An evaluation ν of a data signature S is a map that as-
sociates each field name id in S with a value of the corresponding
type, denoted by ν.id . We denote the set of all evaluations of S by
E(S). Henceforth, we will use the term symbol to refer to an element
in E(S), while we refer to the set E(S) as the data alphabet of S.

Data languages. A data word over a data signature S is a finite
sequence w = w1w2 . . . wn where each element wi is a symbol of
E(S). The length of a data word w, denoted by |w|, is the number of
symbols in the sequence. The empty data word, denoted by ϵ, is the
data word with no data symbols, i.e., |ϵ| = 0. We denote the set of all
data words over E(S) by E(S)∗. A data language over E(S) is any
subset of E(S)∗. For any data word w of length n and i ∈ [n], we
denote its prefix w1 . . . wi by w≤i, and its suffix wi . . . wn by w≥i.

Data logic. This paper extends LTLf by integrating data con-
straints expressed in first-order logic with equality, following stan-
dard syntax and semantics [44]. To handle multiple data types in the
fields of symbols forming data words, we utilize many-sorted sig-
natures. Specifically, we employ a many-sorted first-order logic D
with sorts data1, . . . , datan. Each datai has a corresponding logic
Ddatai , including function symbols of type datah

i → datai and rela-
tion symbols of type datah

i → B, with arity h. These logics encom-
pass features like integer or real arithmetic, arrays, etc. Henceforth,
we assume that D comprises constant symbols Dcon, relation sym-
bols Drel, and function symbols Dfun.

3 LTLf Modulo Theories
We present LTLMT

f , an extension of LTLf [12], tailored for express-
ing data-word properties via embeddedD-formulas. LTLMT

f is a frag-
ment of Geatti et al.’s logic [27], distinguished by the absence of
quantified variables, and it extends the logic of Felli et al. [23] by
allowing more general data constraints. Henceforth, we assume that
S is the data signature of the data words under consideration.

Syntax. Terms of LTLMT
f are defined as follows:

t :=⃝nid | ⃝∼nid | c | f(t1, . . . , tk) ,

where n ≥ 0, id is a field in S, c ∈ Dcon, and f is a k-arity function
symbol inDfun. The grammar includes the next term constructor⃝n

and the weak next term constructor⃝∼n. The superscript n denotes “n
steps in the future” (called lookahead). For instance,⃝2x represents
the value of field x two steps ahead, requiring those steps to exist.
⃝∼2x denotes the same value but does not require those steps to exist.
Instead of⃝0id and⃝∼0id , we can simply write id .

Formulas of LTLMT
f are generated by the following grammar:

φ := p(t1, . . . , tk) | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | Xφ ,

where p ∈ Drel is a relation (or predicate) symbol of arity k applied
to terms t1, . . . , tk. We use ¬ for negation, ∧ for conjunction, and U
for the until operator. The temporal operator X signifies tomorrow
(distinct from next for clarity). In the grammars, f(t1, . . . , tk) and
p(t1, . . . , tk) are assumed to be well-typed, ensuring that the func-
tion f and relation p can operate on the data types of t1, . . . , tk.

Semantics. The LTLMT
f formulas are interpreted over data words,

in accordance with an interpretation D of the symbols of the data
logic D. For a given data word w, a term t within the formula is
interpreted as a value JtKw derived from the underlying data logic.
However, if the term attempts to read beyond the end of the word, it
will be assigned one of two special values: ∇ (a strong error) or ∇̃
(a weak error). In particular, the semantics for function terms gives
higher priority to strong errors compared to weak errors arising from
the arguments. Formally:

J⃝nidKw =

{
wn+1.id if |w| ≥ n+ 1

∇ otherwise.

J⃝∼nidKw =

{
wn+1.id if |w| ≥ n+ 1

∇̃ otherwise.

JcKw = D(c)

Jf(t1, . . . , tk)Kw =


D(f)(Jt1Kw, . . . , JtkKw)

if JtiKw ̸∈ {∇, ∇̃} for all i
∇ if JtiKw = ∇ for at least one i
∇̃ otherwise.



Formulas of LTLMT
f are interpreted over data words. For a data word

w and a LTLMT
f formula φ, we define the satisfaction relationw |= φ

(i.e., w is a model of φ) as follows:

w |= p(t1, . . . , tk) iff
(
JtiKw ̸∈ {∇, ∇̃} for all i, and

D(p)(Jt1Kw, . . . , JtkKw) holds
)

or(
JtiKw ̸= ∇ for all i, and

JtiKw = ∇̃ for at least one i
)

w |= ¬φ iff w ̸|= φ

w |= φ1 ∧ φ2 iff w |= φ1 and w |= φ2

w |= φ1Uφ2 iff there is i ∈ [|w|] s.t. w≥i |= φ2, and

for all j ∈ [i− 1] it holds w≥j |= φ1

w |= Xφ iff |w| > 1 and w≥2 |= φ.

The semantics for predicates gives higher priority to strong errors
over weak errors: if any of the terms within the predicate yields a
strong error, the predicate is false; otherwise, if weak errors arise
from the terms, the predicate is true. The predicate is evaluated ac-
cording to its meaning in the data theory only when no errors occur.
We define the language of an LTLMT

f formula φ, denoted by L(φ),
as the set of all data words w ∈ E(S)∗ such that w |= φ.

Derived operators. We also introduce supplementary logical and
temporal operators derived from the fundamental operators outlined
in the grammar for defining formulas. The logical operators include
∨ for disjunction,→ for implication,↔ for bi-implication, and the
constants true and false . The additional temporal operators are Fφ
(eventually) and Gφ (globally), representing true Uφ and ¬F¬φ,
respectively. Using the standard Tomorrow operator X , we define
the weak Tomorrow operator X̃ as X̃φ def

= last ∨ Xφ, where last
is the formula ¬Xtrue . While X requires the existence of the next
symbol in the word, X̃ does not. Therefore, X̃φ is always true on
the last symbol of a data word. We write Xn and X̃n to signify n
repetitions of the corresponding operator.

Example 1. Consider a simple temperature control system with
four variables: a Boolean heat indicating heating status, a real-
valued temp that represents the temperature in the building, and two
integer-valued variables e (energy consumption) and t (time). The
system follows these rules:

• Time is measured in discrete units of hours.
• Heating increases temperature by 1.5 degrees per hour.
• Without heating, the temperature decreases by 1 degree hourly.
• Minimum heating duration is 4 hours.
• Minimum heating-off duration is 2 hours.
• Each heating hour consumes 1 unit of energy.

These rules can be expressed with the LTLMT
f formula φrules :

G
(
⃝∼ t = t+ 1

∧ heat → (⃝∼ e = e+ 1 ∧ ⃝∼ temp = temp + 1.5)

∧ ¬heat → (⃝∼ e = e ∧ ⃝∼ temp = temp − 1)

∧ (¬heat ∧Xheat)→ (X̃2heat ∧ X̃3heat ∧ X̃4heat)

∧ (heat ∧X¬heat)→ X̃2¬heat
)

∧ e = 0 ∧ t = 0.

The satisfiability problem (SAT) for a given LTLMT
f formula φ

with an associated data signature S asks whether L(φ) is empty. The
following theorem can be proved by reducing the halting problem for
2-counter machines [10] to it.

Theorem 1. The SAT problem for LTLMT
f is undecidable.

Normal Form. We show that removing the weak next term con-
structor⃝∼ from the syntax does not affect expressiveness. This re-
sult is used to streamline the automaton construction outlined later.

Lemma 1. For all LTLMT
f formulas φ, there is an equivalent LTLMT

f

formula φ′ without the weak next term constructor⃝∼ .

Proof. Consider a subformula θ of φ of the form p(t1, . . . , tk),
where at least one term includes the weak next term constructor⃝∼ .
Let a (resp., b) denote the maximum lookahead of⃝∼ (resp.,⃝) in
t1, . . . , tk. For each i ∈ [k], let t′i be the same as ti except that⃝∼n

is replaced by ⃝n. Replace θ with
(
p(t′1, . . . , t

′
k) ∨ ¬Xatrue

)
∧

Xbtrue . The formula φ′ is obtained by applying the above substitu-
tion to all subformulas of the type p(t1, . . . , tk) occurring in φ. It is
straightforward to prove the equivalence of φ and φ′.

Then, we demonstrate that the lookahead can be limited to the
values {0, 1} while maintaining (un)satisfiability, at the cost of en-
larging the signature, similarly to Lemma 7 in [23]. We do not use
this result in the automaton construction in Section 5, because, while
the enlarged signature is inconsequential for satisfiability checking,
it makes model-checking and monitoring applications more cumber-
some, and we want the automaton to work uniformly on all three
applications.

Lemma 2. For all LTLMT
f formulas φ without ⃝∼ , there exists an

equi-satisfiable LTLMT
f formula φ′ in which every term of the form

⃝n satisfies n ∈ {0, 1}.

Proof. Let S be the signature of φ, and let n∗ be the maximum
lookahead of⃝ in φ. To decrease the lookahead to a maximum of 1,
we enrich the signature with n∗ extra copies of the data fields, i.e.,
we set:

S ′ def
=

n∗⋃
i=0

{
(id i : type) | (id : type) ∈ S

}
.

Then, let ψ be the formula on S ′ obtained from φ be replacing each
term of the type ⃝nid with idn. The formula φ′ required by the
statement is the following:

φ′ def
= ψ ∧G

n∗∧
i=1

(
⃝1id i = id i−1

)
.

Proving that φ and φ′ are equisatisfiable is straightforward.

4 Symbolic Data-Word Automata
In this section, we introduce Symbolic Data-Word Automata
(SDWAs), a new automaton type extending traditional finite state au-
tomata (FA) to work with data words. Unlike FAs, SDWAs utilize two
distinct data signatures to define alphabets and state sets. The transi-
tion function includes constraints from a given data logic D. SDWAs
can be seen as a linear (as opposed to branching) variant of symbolic
data-tree automata from [19]. In the next section, we use SDWAs as
the pivotal model allowing us to address various decision problems
related to LTLMT

f , by reducing them to the emptiness problem for
SDWAs.



Definition 1. A symbolic data-word automaton A with data logic
D, is a 5-tuple (SΣ,SQ, ψ0, ψ∆, ψF ) where:

SΣ is the alphabet data signature defining the word alphabet Σ =
E(SΣ). Each field in SΣ is typed with a sort of D;

SQ is the state data signature defining the set of states Q = E(SQ).
Each field in SQ is typed with a sort of D;

ψ0(q) is a D-formula on the free variable q of type SQ,2 defining
the set of initial states, i.e., the set of all the elements q ∈ Q such
that ψ0(q) evaluates to true;

ψ∆(q, a, q′) is the transition constraint, defined as a D formula,
where q and q′ are variables of type SQ, and a is a variable of
type SΣ;

ψF (q) is aD formula on the free variable q, defining the set of final
states F ⊆ Q, i.e., the set of all the elements q ∈ Q such that
ψF (q) evaluates to true.

A is designed to accept SΣ-words. A data word w is considered
accepted by A if there exists a function π : [0, l] → Q, where l =
|w|, such that the following conditions hold: (i) ψ0

(
π(0)

)
is true,

(ii) for all i ∈ [0, l − 1], ψ∆
(
π(i), wi+1, π(i+ 1)

)
is true, and (iii)

ψF
(
π(l)

)
holds.

The set of all SΣ-words accepted by A forms its language, de-
noted by L(A). A is deterministic if (i) for all q ∈ Q and a ∈ Σ
there is exactly one state q′ ∈ Q such that ψ∆(q, a, q′) holds, and
(ii) there is exactly one state q such that ψ0(q) holds. The following
result is proved in the technical report [21] and used to address the
model-checking problem in Section 6.2.

Theorem 2 (CLOSURE UNDER INTERSECTION). Given two SDWAs
A1 and A2, we can effectively construct an SDWA A∩ such that
L(A∩) = L(A1) ∩ L(A2).

4.1 Solving the Emptiness Problem with CHCs

The emptiness problem for symbolic data-word automata consists in
determining if a given SDWA A recognizes any word, i.e., whether
L(A) is empty.

The undecidability of the problem follows from Theorem 1 and the
SDWA construction in Section 5. However, we show that the empti-
ness problem can be effectively reduced to the satisfiability of a CHC
system, which are often solvable with efficient off-the-shelf solvers.

Constrained Horn Clauses. We fix a set R of uninterpreted fixed-
arity relation symbols representing the unknowns in the system. A
Constrained Horn Clause, or CHC, is a formula of the form H ←
C ∧B1 ∧ · · · ∧Bn where:

• C is a constraint over the background data logic D and does not
include any application of symbols in R;

• Bi is an application p(v1, . . . , vk) of a relation symbol p ∈ R to
first-order variables v1, . . . , vk;

• H is the clause head and, similarly to Bi, is an application
p(v1, . . . , vk) of a relation symbol p ∈ R to the first-order vari-
ables, or it is false;

• all first-order variables in the signature of predicates and con-
straints are implicitly universally quantified.

A finite set H of CHCs is a system, corresponding to the first-
order formula obtained by taking the conjunction of all its CHCs.

2 Since q is a variable of type SQ = {idi : typei}i∈[n], ψ0(q) becomes a
D-formula on the variables q.id1, . . . , q.idn.

The semantics of constraints is assumed to be given as a structure.
A system H with relation symbols R is satisfiable if there exists an
interpretation for each predicate in R such that all clauses in H are
valid under that interpretation.

In constraint logic programming, every CHC system H has a
unique minimal model, computed as the fixpoint of an operator de-
rived from its clauses [49, 36]. This semantics justifies the correct-
ness of the reduction defined below.

Reduction. We propose a linear-time reduction from the emptiness
problem for SDWAs to the satisfiability of CHC systems. The trans-
lation of SDWAs, akin to programs with scalar variables, into CHCs
exhibits similarities with the use of proof rules in software verifica-
tion [41, 30].

Given an SDWA A = (SΣ,SQ, ψ0, ψ∆, ψF ), with structured
variables q and q′ of type SQ, a of type SΣ, and h(·) as an unin-
terpreted predicate, we mapA to the CHC systemHA, consisting of
the following CHCs:

HA
def
=


h(q) ← ψ0(q)

h(q′) ← h(q) ∧ ψ∆(q, a, q′)

false ← h(q) ∧ ψF (q).

Theorem 3 (EMPTINESS). The language L(A) of an SDWA A is
empty iff the CHC systemHA is satisfiable.

5 The Automata-Theoretic Construction
This section constructs a deterministic SDWA equivalent to the pro-
vided LTLMT

f formula φ in three steps:

1. Convert φ into an LTLf formula φ′ by abstracting away the data
constraints.

2. Employ classical results to obtain a deterministic finite automaton
Aφ′ equivalent to φ′.

3. Convert Aφ′ into an SDWA by checking the data constraints on
the appropriate data.

The process is similar to a result for a fragment of the logic
MSO-D [19]. In contrast, our paper presents a deterministic automa-
ton and manages an arbitrary lookahead of the next term constructor.

5.1 Transforming to LTLf
Here, we define the LTLf formula abs(φ), crafted to abstract data
constraints from φ. Thanks to Lemma 1, we can assume that φ does
not contain the⃝∼ constructor.

Consider all subformulas of the form p(t1, . . . , tk) within φ, de-
noted as θ1, . . . , θm. For each i ∈ [m], introduce a new atomic
proposition bi, and let ni be the maximum lookahead of the⃝ oper-
ator within θi. Construct the LTLf formula abs(φ) by replacing each
occurrence of θi in φ with the formula Xnibi. The rationale behind
this transformation is that to establish the truth of θi, it may be neces-
sary to read from the data word up to ni positions ahead. As our ul-
timate goal is to construct a deterministic FA for φ, we defer the ver-
ification of θi by ni steps, allowing the automaton to read and store
all relevant data needed to establish its truth. Let AP = {b1, . . . , bm}
be the atomic propositions in abs(φ).

To establish the semantic relation betweenφ and abs(φ), we apply
a similar abstraction to data words. Intuitively, we need to define the
truth of each atomic proposition bi based on the data present in the
data word. To preserve the correspondence between Xnibi and θi,



the truth of bi in a given position j in the abstract word must be the
same as the value of θi in the data word ni steps earlier than j. It is
still not clear what should be the value of bi in the first ni positions
of the abstract word, because for those positions there is not enough
past data to evaluate θi. To solve this technical issue, we assume that
each data type includes a default value, and we use those default
values to evaluate θi when it reads beyond the start of the data word.
This solution ends up attributing essentially arbitrary values to bi in
the early positions of the abstract word, but this does not thwart our
construction. Indeed, since every occurrence of bi in abs(φ) appears
in the context Xnibi, abs(φ) is insensitive to the value of bi in the
first ni positions of the word.

Let def k denote the data word of length k where all fields hold the
default value of their type. For a data word w on the data signature
S of φ, let abs(φ,w) be the word w′ over the finite alphabet 2AP,
defined as follows:

• the length of w′ is the same as the length of w;
• for all i = 1, . . . ,m and j = 1, . . . , |w|,

bi ∈ w′
j ⇐⇒

{
w≥j−ni |= θi if j > ni

def ni−j+1 · w |= θi otherwise.

Theorem 4. For all LTLMT
f formulas φ and data words w on the

same data signature, w |= φ iff abs(φ,w) |= abs(φ).

5.2 Building the SDWA

Recall the following well-known result about LTLf :

Theorem 5 ([11]). For all LTLf formulas φ, we can effectively con-
struct an equivalent deterministic FA.

Let Aφ′ = (2AP, Q, q0, δ, F ) be a deterministic FA equivalent to
φ′ = abs(φ), where δ : Q × 2AP → Q. We define a deterministic
SDWA Aφ = (S,SQ, ψ0, ψ∆, ψF ) with:

SQ = {state : Q} ∪ {datai : S}i∈[N ] , where N is the maximum
of the ni’s, that is, the maximum lookahead of the ⃝ term con-
structor in φ. In words, the state data signature of the automaton
holds a state of the finite automatonAφ′ and N copies of the data
signature of the original formula. The first component (i.e., state)
is used to simulate a run ofAφ′ , and the second (i.e., data) stores
the previous N symbols read from the data word. Specifically, the
field datai contains the symbol that was read i steps ago, as spec-
ified in the definition of ψ∆ below.

ψ0(s) holds iff s.state = q0, and all other fields contain the default
value of their type.

ψ∆(s, a, s′) holds iff (i) s′.data1 = a, (ii) s′.datai+1 = s.datai

for all i ∈ [N − 1], and (iii) it holds δ(s.state, σ) = s′.state ,
where, for all i ∈ [m]:

bi ∈ σ iff s.datanis.datani−1 · · · s.data1 a |= θi . (1)

ψF (s) holds iff s.state ∈ F .

Note that when the symbolic automaton begins reading a data
word, its buffer of symbols kept in the data fields is initialized with
default values, which are gradually replaced by those contained in
the last N symbols read. Hence, the data constraints θi are initially
evaluated over default data values, resulting in essentially arbitrary
truth values. This is not a problem, because the formula φ′, which
guides the state component of the symbolic automaton and pre-
scribes which data constraints must be true at each step, is insensitive
to the value of bi in the first ni positions of the word, as noted earlier.

We now state the main result of this section.

Theorem 6. For all LTLMT
f formulas φ, we can effectively construct

a deterministic SDWA Aφ s.t. L(Aφ) = L(φ).

6 Applications
In this section, we demonstrate the versatility of our automata-
theoretic approach in addressing diverse challenges associated with
LTLMT

f , namely satisfiability, model checking, and monitoring.

6.1 Satisfiability

The findings in the preceding sections offer a direct route to tackle
the satisfiability problem for LTLMT

f . Theorem 6 establishes that any
LTLMT

f formula can be converted into an equivalent SDWA. By lever-
aging Theorem 3, we transform the emptiness of an SDWA into the
satisfiability of a system of CHCs. This reduction facilitates the ap-
plication of advanced solution techniques, as illustrated in Section 7.
There, we assess the satisfiability of diverse benchmark formulas us-
ing Z3 as the underlying CHC solver.

Theorem 7. The LTLMT
f satisfiability problem can be effectively re-

duced to the emptiness problem for SDWAs.

6.2 Model Checking

The LTLMT
f model-checking problem for an SDWAM and an LTLMT

f

formula φ is to decide whether there exists a data word w in the
language ofM that is a model of φ (i.e., w |= φ).

The undecidability of this problem stems from the undecidability
of the emptiness problem for SDWAs. Nonetheless, we can readily
devise a sound procedure for solving the model-checking problem
by ultimately employing CHC solvers.

Our procedure is as follows. Firstly, we create an SDWA Aφ such
thatL(φ) = L(Aφ) (refer to Theorem 6). Subsequently, utilizing the
construction associated with the closure of SDWAs under intersection
(as detailed in the proof of Theorem 2), we generate a new SDWA A
such that L(A) = L(M)∩L(Aφ). The determination of the answer
to the model-checking problem relies on establishing whether L(A)
is empty: a positive answer to the model-checking problem for M
and φ occurs iff the language of A is non-empty.

Theorem 8. The LTLMT
f model-checking problem can be effectively

reduced to the emptiness problem for SDWAs.

When the CHC engine proves that the model-checking problem
admits a positive answer, a data word satisfying the formula can be
derived from the counterexample to the CHC system.

6.3 Runtime Monitoring

At times, the model checking of complex systems becomes in-
tractable owing to the inherent complexity of the system. This leads
to the adoption of less intricate verification approaches, such as run-
time monitoring. In runtime monitoring, we continuously observe the
system’s execution and promptly notify any violation or fulfillment
of the specified property. In this context, we delve into runtime mon-
itoring concerning a given LTLMT

f formula φ.
In defining the monitoring problem, we trace the satisfaction

status of φ along a trace of M, considering the trace fragment
w that has been observed thus far. Following established conven-
tions [3, 43, 23], we define RV = {PS,CS,CV, PV} as the set
of four monitoring states: current satisfaction (CS), permanent satis-
faction (PS), current violation (CV), and permanent violation (PV).



Definition 2. For a given data word (trace)w and an LTLMT
f formula

φ, the monitoring problem is the task of determining the monitoring
state st ∈ RV that satisfies one of the following conditions:

• st = CS, w |= φ, and ww′ ̸|= φ for some trace w′;
• st = PS, w |= φ, and ww′ |= φ for every trace w′;
• st = CV, w ̸|= φ, and ww′ |= φ for some trace w′;
• st = PV, w ̸|= φ, and ww′ ̸|= φ for every trace w′.

The following undecidability result should come as no surprise,
and can be proved along similar lines as the previous ones.

Theorem 9. The monitoring problem for LTLMT
f is undecidable (al-

ready for linear constraints).

We provide a sound procedure to solve the monitoring prob-
lem for LTLMT

f . To achieve this, consider the deterministic SDWA

Aφ = (S,SQ, ψ0, ψ∆, ψF ), as detailed in Theorem 6. Now, define
two new SDWAs as follows:

Aφ(q, F ) is derived from Aφ by replacing the initial state with the
state q ∈ SQ, and maintaining the same final states as Aφ, i.e.,
ψF (s) =

(
s.state ∈ F

)
.

Aφ(q, F ) is obtained from Aφ by replacing the initial state with
q ∈ SQ, and updating the final states with the formula ψF (s) =(
s.state ̸∈ F

)
.

Monitoring Procedure:

1. Utilizing a structured variable, denoted as q, we monitor the
state of Aφ as the analyzed system evolves. Initialization of
q involves assigning it the unique state s that satisfies ψ0(s).

2. After each system transition, we update q with the unique
state in which Aφ moves to. We determine the monitoring
state as follows:

CS: if ψF (q) = true , and L
(
Aφ(q, F )

)
̸= ∅;

PS: if ψF (q) = true , and L
(
Aφ(q, F )

)
= ∅;

CV: if ψF (q) = false , and L (Aφ(q, F )) ̸= ∅;
PV: if ψF (q) = false , and L (Aφ(q, F )) = ∅.

The above procedure justifies the following result.

Theorem 10. The LTLMT
f monitoring problem can be effectively re-

duced to the emptiness problem for SDWAs.

As per Theorem 9, the procedure might time out. One approach
is to execute Aφ along with the system and provide a conclusive
answer only upon the system’s termination. However, approximate
solutions that anticipate an answer remain viable. By performing two
emptiness checks on FAs corresponding respectively to abs(φ) and
to its complement (rather than on the SDWAs Aφ(q, ·)), a correct
answer is given when the result is PS or PV. If the result is CS (resp.,
CV), the actual monitoring state may be {CS, PS} (resp., one of
{CV, PV}). This imprecision does not introduce monitoring errors
but extends monitoring until a definitive answer is attainable.

7 Satisfiability Experiments
In this section, we present experiments to evaluate the satisfiability
of various LTLMT

f formulas. The experiments include the temperature
control system outlined in Example 1 and formulas from [27].

CHC solver (Z3)

LTLMT
f

formula
Data signature
and constraints

LTLf

formula SPOT

CHCs

Automaton to CHCs
FA

Figure 1. Architecture of the prototype implementation. Dashed transfor-
mations are performed manually.

Figure 1 illustrates the experimental toolchain. We manually trans-
lated each LTLMT

f formula into LTLf , as described in Section 5.1, and
then into LTL, in order to feed it to the tool SPOT [18], generating a
corresponding FA. Next, our script converts the FA into a CHC sys-
tem encoding the emptiness of the corresponding symbolic SDWA,
as detailed in Sections 5.2 and 4.1, representing each FA state as a
distinct uninterpreted predicate. Finally, we use the SMT-solver Z3
to check the satisfiability of the CHC system. Theorem 3 establishes
an inverse link between the satisfiability of the original LTLMT

f for-
mula and the CHC system. In this section, references to satisfiability
refer to the original LTLMT

f formula.
Experiments were performed on an AMD Ryzen 9 5900X

(3.70Ghz) with 32GB of RAM and running Windows 10. The CHC
solver was Z3, version 4.6.0 (64 bit). All formulas were also tested
with the BLACK tool by Geatti et al. [27].

The experimental results are presented in Table 1.

Temperature Control. Reconsider Example 1, where the formula
φrules describes a temperature control system. Suppose we want to
verify the system’s capability to bring the temperature back to at least
20◦C after 24 hours, starting from 20◦C and never dropping below
18◦C, with an energy budget ofN units, whereN is a parameter. We
express this requirement with the following formula:

TEMPCTRL
def
= φrules ∧ (temp = 20) ∧G(temp ≥ 18)

∧X24(e ≤ N ∧ temp ≥ 20) .

Verifying TEMPCTRL satisfiability determines if the system can
achieve the specified property. The resulting model provides an
energy-efficient heating schedule. A binary search onN showed that
at least 10 hours of heating is needed. All cases were resolved within
seconds, with BLACK being slightly faster.

Formulas from Geatti et al. We analyzed all formulas from Ta-
ble 2 in [27], which includes two families with constraints in linear
integer arithmetic (LIA), denoted by LIA1 and LIA2, and a family
with constraints in linear real arithmetic (LRA), denoted LRA1. All
formulas are parameterized by an integer N . Table 1 shows that our
approach handles all instances, showing similar or superior perfor-
mance. Notably, we can detect the unsatisfiability of LIA1 with pa-
rameter −1. Moreover, [27] contains two families of formulas that
our approach cannot currently handle, because the theories employed
are not supported by CHC solvers: one with a non-linear real con-
straint;3 and another with an uninterpreted integer function. Lastly,
the authors of [27] point out that the unsatisfiability of the formula

GANDF def
= G(x > 3) ∧ F (x < 2)

cannot be proved by their method, whereas our approach promptly
identifies the contradiction.

3 In that paper, that family is erroneously tagged with LRA, despite containing
the non-linear term 1

g
.

https://spot.lre.epita.fr/
https://github.com/black-sat/black


Time (sec.)
Formula N Sat # of CHCs This paper BLACK [27]

TEMPCTRL

6 No

202

4.3 < 1
9 No 6.9 < 1

10 Yes 2.3 < 1
12 Yes 1.7 < 1
24 Yes < 1 < 1

LIA1

-1 No

7

< 1 timeout
10 Yes < 1 < 1
100 Yes < 1 < 1

1000 Yes 6.6 5.2

LIA2

10 No 14 < 1 < 1
50 No 54 2.7 4.8

100 No 104 59 167.4

LRA1

10 Yes 18 < 1 < 1
100 Yes 108 < 1 6.2

1000 Yes 1008 6.9 timeout
GANDF - No 5 < 1 timeout

Table 1. Satisfiability experiments. Running times for this paper refer to
the CHC solving time only, as the time to generate the CHCs is negligible.
Timeout is 10 minutes.

8 Related Work

Our work is related to many works in the literature in different ways.
In addition to the works discussed in the introduction, here we focus
on those that seem to be closest to the results presented in this paper.

Data-aware Logics. Various proposals extend temporal logics
with data-oriented features. Temporal Stream Logic [25] is an unde-
cidable logic aimed at reactive synthesis, able to model the dynamic
input-output relation of a reactive system while abstracting from spe-
cific data domains and operations. Further developments support spe-
cific data theories [24], develop a counterexample-guided abstraction
refinement (CEGAR) loop involving LTL synthesis and SMT queries
[42], and exploring connections with syntax-guided synthesis [8].

Other LTL extensions aim at retaining the decidability of satisfia-
bility by focusing on simple data theories [16] or by avoiding com-
parisons between data at different positions of the word [17, 2, 29].4

Additionally, Geatti et al. [28] describe various decidable fragments
of LTLMT

f . In contrast, our logic (derived from [27]) is data-theory-
agnostic and allows comparisons between data values at different po-
sitions using the next term constructor. These features radically raise
the expressive power of the specifications and renders the satisfia-
bility problem undecidable. Thus, the above extensions of LTL do
not subsume our results, and our contributions do not subsume the
state-of-the-art decidability results.

Symbolic Automata. There is a variety of models for symbolic
automata, the most prominent being the symbolic finite automata of
D’Antoni and Veanes [9]. In these automata, only the alphabet is
possibly infinite, whereas the state space is finite. In particular, they
do not allow to compare data values in different positions of the data
word, which is a main concern of our investigation. Such symbolic
finite automata form a strict and decidable subclass of our SDWAs.
In contrast, SDWAs support infinite state spaces and their emptiness
is undecidable, similarly to programs.

Several other models feature a hybrid state-space with a finite
component that has a limited interaction with the infinite domain of

4 Note that, in the context of model checking, comparing data in different
positions can generally be achieved within the system, using extra storage.
Hence, a more detailed comparison with the concurrent findings of Gianola
et al. [29] merits further investigation.

symbols being read. For instance, the Theory Mealy and Moore ma-
chines of Maderbacher and Bloem [42] pair a finite state-space with
the possibility of storing data values and comparing them with pred-
icates from the given data theory. Other models of finite automata on
infinite alphabets include the register and pebble machines of Neven
et al. [46] and the variable automata of Grumberg et al. [31].

CHCs for Program Verification. Our work builds upon the recent
surge of interest in constrained Horn clauses for automated software
model checking [6, 4]. Algorithms that efficiently solve systems of
CHCs have been developed, often by adapting or extending tech-
niques from automatic program verification [30, 32, 6]. CHCs of-
fer a unique and elegant way to construct model checkers entirely
through logic rules [20, 7, 26, 33, 35, 37, 39, 45]. This approach
holds promise for efficient verification of temporal logic with data,
especially considering the significant advancements made in CHC
satisfiability solvers in recent years [22].

To leverage this potential, we introduce a novel automata-theoretic
approach [40, 50]. We employ a translation technique that transforms
SDWAs (or equivalently, transition systems) into CHCs. This transla-
tion aligns with existing applications of CHCs in software verifica-
tion [41, 30]. Furthermore, our approach follows the growing trend of
using automata theory in automated software model checking [34].

Runtime Monitors. Related monitoring problems have been stud-
ied in [15], focusing on comparing data values at arbitrary distances,
and [23], with an emphasis on linear arithmetic and properties con-
ducive to decidable solutions. Unlike [23], our approach, while pos-
sibly non-terminating, operates on more general data constraints.
While our method might not always find a solution, it can handle
a wider range of data constraints compared to these prior works.

9 Conclusions
In summary, we presented an novel automata-based approach sup-
porting linear temporal logic modulo theory as a specification lan-
guage for data words. Our framework translates LTLMT

f into sym-
bolic data-word automata, demonstrating their efficacy in capturing
intricate temporal properties of executions of infinite-state systems.

Notwithstanding the undecidability of both LTLMT
f satisfiability

and SDWA emptiness, we showed that both problems can be re-
duced to solving CHCs, which allows us to capitalize on modern
solvers. Empirical experiments substantiate the effectiveness of our
approach, sometimes outperforming a previous custom solution and
tool. These results highlight the practicality and broad applicability
of our automata-based framework. Our approach seamlessly extends
beyond satisfiability to encompass model checking and runtime mon-
itoring in a unified way, effectively bridging three traditionally sepa-
rate problems in prior research.

Future work. A promising direction for future work is integrating
results from [23]and [27], into the domain of solving CHCs, to im-
prove the effectiveness of CHC solvers in general and our approach
in particular. Additionally, we see potential in extending our frame-
work to accommodate other LTL dialects, such as CaRet logic [1]
with data and context-free systems that involve data. This expan-
sion could advance formal verification and monitoring by handling a
wider range of temporal specifications.
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