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A multi-stack pushdown system is a natural model of concurrent programs. The basic 
verification problems are undecidable and a common trend is to consider under-
approximations of the system behaviors to gain decidability. In this paper, we restrict 
the semantics such that a symbol that is pushed onto a stack s can be popped only within 
a given number of contexts involving s, i.e., we bound the scope (in terms of number 
of contexts) of matching push and pop transitions. This restriction permits runs with 
unboundedly many contexts even between matching push and pop transitions (for systems 
with at least three stacks). We call the resulting model a multi-stack pushdown system with 
scope-bounded matching relations (SMpds). We show that the configuration reachability and 
the location reachability problems for SMpds are both Pspace-complete, and that the set of 
the reachable configurations can be captured by a finite automaton.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multi-stack pushdown systems are a natural and well-established model of programs with both concurrency and re-
cursive procedure calls, which is suitable to capture accurately the flow of control. A multi-stack pushdown system is 
essentially a finite control equipped with one or more pushdown stores. Each store encodes a thread of the program and 
the communication between the different threads is modelled with the shared states of the finite control.

The class of multi-stack pushdown systems is very expressive. It is well known that two stacks can simulate an un-
bounded read/write tape, and therefore, a push-down system with two stacks suffices to mimic the behavior of an arbitrary 
Turing machine. In the standard encoding, it is crucial for the automaton to move an arbitrary number of symbols from 
one stack to another and repeat this for arbitrarily many times. To achieve decidability it is thus necessary to break this 
capability by placing some limitations on the model.

The analysis of multi-stack pushdown systems within a bounded number of execution contexts (in each context only 
one stack is used) has been proposed as an effective method for finding bugs in concurrent programs [1]. This approach is 
justified in practice by the general idea that most of the bugs of a concurrent program are likely to manifest themselves 
already within few execution contexts (which has also been argued empirically in [2]). Though bounding the number of 
context-switching in the explored runs does not bound the depth of the search of the state space (the length of each context 
is unbounded), it has the immediate effect of bounding the interaction among different threads and thus the exchanged 
information. In fact, the reachability problem with this limitation becomes decidable and is NP-complete [3,1].
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In this paper, we propose a decidable notion of multistack pushdown system that does not bound the number of in-
teractions among the different stacks, and thus looks more suitable for a faithful modeling of programs with an intensive 
interaction between threads. We impose a restriction which is technically an extension of bounding the number of context-
switching but is indeed conceptually very different. We allow an execution to go through an unbounded number of contexts, 
however recursive calls that are returned can only span over a bounded number of contexts of the same stack, i.e., when 
executing a returned call a thread can be preempted only for a bounded number of times. In other words, we bound the 
scope of the matching push and pop operations of a stack s in terms of the number of context switches from s. Note that 
under such a restriction, whenever a symbol is pushed onto a stack s, it is popped either within a bounded number of con-
texts of s or never. This has the effect that in an execution of the system, from each stack configuration which is reached, at 
most a finite amount of information can be moved into the other stacks, thus breaking the ability of the multistack push-
down system of simulating a Turing machine. We call the resulting model a multistack pushdown system with scope-bounded 
matching relations (SMpds).

Our main technical contribution is to show the decidability of the reachability problem for SMpds. We consider both 
the location and configuration reachability problems. The configuration reachability problem asks whether a configuration (a 
control state along with the stack contents) within a set of target configurations of the SMpds is reachable. We consider 
sets of target configurations given as the cross product of a set of control states and a regular language of stack contents for 
each thread. In the location reachability problem the request is only with respect to a set of target control states (location) 
regardless of the actual stack contents of the reached configurations.

For the location reachability, we give a fixed-point decision algorithm based on the notion of thread interface introduced 
in [4]. A h-thread interface summarizes the starting and ending control states of h consecutive contexts of a thread within a 
run of a Mpds, assuming that the thread stack is empty when the first of such contexts starts. Our algorithm first guesses 
for each thread a thread interface, then it advances in the simulation of a run of the Mpds by stitching the contexts of these 
interfaces until one of them will be entirely consumed (this corresponds to advancing in the run by macro-steps covering 
each an entire context). At this point, a new thread interface is taken for the corresponding thread and the simulation is 
resumed. The algorithm stores tuples formed of a control state and a thread interface suffix for each thread (the remaining 
parts of the guessed thread interfaces still to be used). It halts as soon as a target control state is reached or no new such 
tuples can be added (and thus no new simulation is possible). For termination, we show that any k-scoped run (i.e., a run 
where the scope of the matching relations is bounded by k) can be captured by using only h-thread interfaces with h ≤ k, 
and thus for a given k, a finite number of thread interfaces will suffice to explore all such runs. Therefore, by restricting 
the guesses to only h-thread interfaces with h ≤ k, the algorithm is guaranteed to terminate. As for the complexity, our 
algorithm can be implemented to take time exponential in k and n and polynomial in d, where n is the number of threads 
and d is the number of control states of the SMpds.

In thread interfaces, the content of thread stack is entirely abstracted away. Thus for the general reachability problem 
we introduce a new abstraction called layered stack automaton. For a thread T , an �-layered stack automaton captures the 
top portion of its stack which corresponds to the symbols that were pushed within the last t contexts of T . The automaton 
is structured into layers that are added incrementally by applying for each layer a saturation procedure similar to the one 
given in [5] for standard (one-stack) pushdown systems. Since in k-scoped runs only the symbols that were pushed within 
the last k contexts of a thread can be popped, we can restrict to �-layered stack automata with � ≤ k to keep track of the 
meaningful top portion of the stack during a computation. We then relate the layered automata of a thread via a successor
relation: a layered automaton A is a successor of a layered automaton B if A is obtained by adding a new layer to B
via the saturation procedure. We thus reconstruct the stack content through the portions captured by bounded layered 
automata connected via the successor relation. We call the resulting finite automaton a thread automaton. To capture the 
set of reachable configurations, we thus construct another finite automaton R that uses as components a thread automaton 
for each thread and synchronizes all of them by picking the next context (among the next possible ones for each thread 
automaton) such that it can be stitched to the last processed one. Assuming that the stack contents of the target set are 
expressed by finite automata, we can modify R to simulate such automata in parallel with the thread automata by a 
standard cross product, that reduces the configuration reachability to standard reachability for finite automata. As for the 
complexity, the outlined algorithm can be implemented to take time exponential in k2, d2 and n and polynomial in the size 
of the target set representation, where n is the number of threads and d is the number of control states of the SMpds.

We observe that both our algorithms can be implemented to take polynomial space. For the first one, at each iteration 
instead of maintaining a set of tuples we can just maintain one tuple (the last computed one) and nondeterministically 
select the next rule to apply. The algorithm will halt as soon as we compute a tuple with control state in the target set 
or we have reached a number of iterations that equals the number of possible different tuples. This can be determined by 
counting the number of different thread interfaces with bound k. For the second one, we recall that it is well known that 
reachability in finite automata can be decided in logarithmic space, and since we can explore the resulting automaton on-
the-fly, we clearly get a Pspace upper bound also for the configuration reachability for SMpds. We show that both location 
reachability and configuration reachability for SMpds are Pspace-complete by providing a matching lower bound. Indeed, 
we show the upper bound is tight with respect to both the number of stacks and the bound k. For this, we sketch two 
reductions from the membership problem of Turing machines working in polynomial space to the location reachability 
problem for respectively n-stack 2-SMpds and 2-stack 2k-SMpds.



S. La Torre et al. / Information and Computation 275 (2020) 104588 3
As a further result, we compare the state coverage by exploring scoped runs as opposed to other restrictions for Mpds

that have been introduced in the literature. As observed above, the bounded scope restriction is an extension of bounded 
context-switching. Interestingly, we show that this restriction allows us to achieve a state space exploration of Mpds that is 
orthogonal with respect to bounding the number of phases [6], restricting to ordered runs [7], and restricting to runs that 
can be encoded in bounded path-trees [8].

The rest of the paper is organized as follows. In Section 2, we discuss the related work. In Section 3, we introduce the 
notion of Mpds with related notation and definitions. In Section 4, we define the reachability problem and discuss the state 
coverage ensured by bounded scope runs as opposed to existing limitations. Our solutions to the location reachability and 
configuration reachability problems are given respectively in Section 5 and Section 6. We also address the computational 
complexity in the respective sections. We give our conclusions and future directions in Section 7.

2. Related work

In this paper we re-elaborate the results of [9] as follows. First, here we use the notion of bounded scope runs that was 
introduced later in [10]. This notion captures more behaviors with respect to the original one given in [9] and in particular 
can account for unboundedly many contexts of the other threads between a push and its matching pop transition. We thus 
re-elaborate accordingly the decision algorithm for the configuration reachability problem from [9] and show its correctness 
in detail. For the location reachability, we give a simpler algorithm that adapts the solution given in [11], which was also 
given for the original notion of bounded scope runs and by assuming a round-robin scheduling of the threads. Finally, the 
discussion on the state space coverage of bounded scope runs is given in more detail and extended to account for the results 
appeared after the publication of [9].

Our fixed-point algorithm for the location reachability of Mpds uses the concept of thread interface introduced in [4]. 
Thread interfaces are a simpler artifact than finite automata and can be easily encoded for efficient symbolic search. In 
fact, our fixed-point algorithm has a direct implementation in the tool Getafix, a framework that supports the writing in a 
fixed-point calculus of model-checkers for sequential and concurrent Boolean programs (see [12]).

Our decision algorithm for configuration reachability of Mpds relies on the saturation procedure used for the analysis 
of pushdown systems [5]. This procedure was already reused in [1] for solving the reachability of Mpds within a bounded 
number of context switches. As in [1], we compute the set of reachable configurations as tuples of automata accepting 
configurations of each stack, and construct the automata by iterating the saturation algorithm from [5] into layers, each for 
execution context. However, in [1] the construction has a natural limit in the allowed number of contexts which is bounded, 
while in our setting, we appeal to the bound on the scope of the matching relations and use the automata to represent not 
all the stack contents but only the portions corresponding to the last k execution contexts of the corresponding thread.

Since their introduction [9], the theory of bounded scope Mpds has been enriched with more results. In [13], SMpds

define a robust class of visibly languages that enjoys the main properties of regular languages such as: decidability of 
emptiness, membership, inclusion, equivalence and universality; closure under union, intersection, complement and de-
terminization; MSO characterization and Parikh theorem. SMpds also admit sequentialization, i.e., simulation by standard 
pushdown systems, and the corresponding class of behavior graphs (nested words with multiple stack relations expressing 
system computations) has bounded treewidth [11]. Bounded treewidth for this class is also shown in [14] via the notion of 
splitwidth. Finally, SMpds have a natural and meaningful semantics for infinite computations which allows to observe also 
infinitely many interactions between the different threads. The model-checking problem of SMpds against linear temporal 
logic is shown to be decidable for LTL in [15] and for a concurrent version of CARET [16] in [10].

The bounded scope restriction is introduced as a generalization of the bounded context-switching [1]. This notion has 
been successfully used in recent research: model-checking tools for concurrent programs (see [12,17–22]); translations 
of concurrent programs to sequential programs reducing bounded context-switching reachability to sequential reachabil-
ity [23,17,21,22]; model-checking tools for Boolean abstractions of parameterized programs (concurrent programs with 
unboundedly many threads each running one of finitely many codes) [4]; sequentialization algorithms for parameterized 
programs [24]; model-checking of programs with unbounded dynamic creation of threads [25] and more liberal scheduling 
of threads [26,27]; analysis of systems with heaps [28], systems communicating using queues [29], and weighted pushdown 
systems [3], complexity results [30].

More decidable restrictions that extend bounded context switching for Mpds have been considered in literature. In 
[6], the notion of context is relaxed and the behaviors of multistack pushdown systems are considered within a bounded 
number of phases, where in each phase only one stack is allowed to execute pop transitions but all the stacks can do 
push transitions. The location reachability problem in this model turns out to be 2Etime-complete [6,31]. In [32] the set of 
predecessor configurations up to k phases is shown to be regular. Model-checking for bounded phase Mpds is studied in 
[33–35]. We observe that in each phase an unbounded amount of information can pass from one stack to any other, but 
still this can be done only a bounded number of times. Thus, in some sense this extension is orthogonal to that proposed in 
this paper and this is indeed confirmed by our results which show that the set of configurations that are reachable within 
a bounded number of phases can be incomparable with the one reachable by bounded scope runs. Moreover, it is simple 
to verify that the extension of SMpds where contexts are replaced with phases in the rounds is as powerful as Turing 
machines.
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Another decidable restriction of Mpds is ordered Mpds [7], where symbols can be popped from stack i only if all the 
stacks from 1 to i − 1 are empty. Visibly 2-stack ordered Mpds are studied in [36,37]. The closure under complement for 
ordered MPDSs, and thus the decidability of inclusion, equivalence and universality, is given in [8].

In Mpds with budgets each thread can perform at most k consecutive context switches unless its stack depth goes below 
the given bound d [38]. This restriction in some sense enforces the bounded scope restriction when the stacks pass the 
depth threshold, and does not seem to add to it more than a finite state store of exponential size (which can be explored 
taking polynomial space).

A general decidability result shows that most of the syntactic restrictions placed on Mpds lead to classes of graphs 
representing the runs of the Mpds that are MSO-definable and of bounded treewidth [39]. Bounded scope and bounded 
phase restrictions have been studied for concurrent collapsible Mpds [40], and the bounded phase restriction also for parity 
games on Mpds[41]. The notion of bounded context-switching has been recently investigated for valence systems [42].

3. Multi-stack pushdown systems with scope-bounded runs

In this section we introduce the notations and definitions we will use in the rest of the paper. We assume that the 
reader is familiar with the basic concepts on finite automata, trees and graphs.

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers k with i ≤ k ≤ j, and with [ j] the set 
[1, j].
Multistack pushdown systems. A multi-stack pushdown system consists of a finite control along with one or more push-
down stores. There are three kinds of transitions that can be executed: the system can push a symbol on any of its stacks, 
or pop a symbol from any of them, or just change its control state by maintaining unchanged the stack contents. For the 
ease of presentation and without loss of generality we assume that the symbols used in each stack are disjoint from each 
other. Therefore, a multi-stack pushdown system is coupled with an n-stack alphabet �̃n defined as the union of n pairwise 
disjoint finite alphabets �1, . . . , �n .

Formally:

Definition 1. (Multi-stack pushdown system) A multi-stack pushdown system (Mpds) with n stacks is a tuple M =
(Q , Q I , ̃�n, δ) where Q is a finite set of states, Q I ⊆ Q is the set of initial states, �̃n is an n-stack alphabet, and 
δ ⊆ (Q × Q ) ∪ (Q × Q × �̃n) ∪ (Q × �̃n × Q ) is the transition relation. A pushdown system (Pds) is a Mpds with 
just one stack. For each i ∈ [n], with T i

M we denote the i-th thread of M , i.e., the Pds (Q , Q I , �i, δi) where δi =
δ ∩ ( (Q × Q ) ∪ (Q × Q × �i) ∪ (Q × �i × Q ) ). �

We fix an n-stack alphabet �̃n = ⋃n
i=1 �i for the rest of the paper. A transition (q, q′) is an internal transition where the 

control changes from q to q′ and the stack contents stay unchanged. A transition (q, q′, γ ) for γ ∈ �i is a push-transition 
where the symbol γ is pushed onto stack i and the control changes from q to q′ . Similarly, (q, γ , q′) for γ ∈ �i is a pop-
transition where γ is read from the top of stack i and popped, and the control changes from q to q′ . A stack content w
is a possibly empty finite sequence over �i , for some i ∈ [n]. A configuration of a Mpds M is a tuple C = 〈 〈q, w1, . . . , wn〉 〉, 
where q ∈ Q and each wi ∈ �∗

i is a stack content. Moreover, C is initial if q ∈ Q I and wi = ε for every i ∈ [n]. A transition 
〈 〈q, w1, . . . , wn〉 〉 →M 〈 〈q′, w ′

1, . . . , w
′
n〉 〉 is such that one of the following cases holds (M is omitted whenever it is clear from 

the context):

[Internal] there is a transition (q, q′) ∈ δ, and w ′
h = wh for every h ∈ [n];

[Push] there is a transition (q, q′, γ ) ∈ δ such that γ ∈ �i , w ′
i = γ · wi , and w ′

h = wh for every h ∈ ([n] \ {i});
[Pop] there is a transition (q, γ , q′) ∈ δ such that wi = γ · w ′

i and w ′
h = wh for every h ∈ ([n] \ {i}).

A run of M from C0 to Cm , with m ≥ 0, denoted C0 �M Cm , is a possibly empty sequence of transitions Ci−1 →M Ci for 
i ∈ [m] where each Ci is a configuration.

For a Mpds M and h ∈ [n], a context of thread T h
M , h-context for short, is a portion of a run of M where the pop and 

push transitions are all over stack h. More formally, a h-context from C to C ′ , denoted C �h
M C ′ , is a run C �M C ′ whose 

transitions are all from δh , i.e., involve only thread T h
M .

For the ease of presentation, in the following, we will abuse the notation and identify runs of the h-th thread and h-
contexts. In particular, we will also denote a context 〈 〈q, w1, . . . , wn〉 〉 �h

M 〈 〈q′, w ′
1, . . . , w ′

n〉 〉 simply as 〈 〈q, wh〉 〉 �h
M 〈 〈q′, w ′

h〉 〉. 
Similarly, a transition 〈 〈q, w1, . . . , wn〉 〉 →M 〈 〈q′, w ′

1, . . . , w ′
n〉 〉 within an h-context will be also denoted as 〈 〈q, wh〉 〉 →h

M〈 〈q′, w ′
h〉 〉.

For each thread T h
M , we are also interested in sequences of h-contexts where each context builds on the stack content left 

by the previous one in the sequence. In other words, such a sequence would form a run of T h
M except that each context does 

not need to start from the control state that ended the previous one. Formally, a multiple context run of T h
M is a sequence of 

h-contexts ρ1, . . . , ρm such that w1 = ε and w ′ = wi+1 for i ∈ [m − 1], where ρi = 〈 〈q, wi〉 〉 �h 〈 〈q′, w ′〉 〉 for i ∈ [m].
i M i
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Fig. 1. Graphical representation of the Mpds M1 from Example 1.

Example 1. Fig. 1 gives a 2-stack Mpds M1 with stack alphabets �1 = {a, b} and �2 = {c}. The starting state of M1 is q0 and 
its transition relation is: {(q0, q1), (q1, q2, a), (q2, q3, b), (q3, q2, c), (q2, q4), (q4, b, q4), (q4, a, q5)}.

A typical execution of the system M1 from the initial state q0 starts with an internal move to q1 and then pushing a onto 
stack 1. Thus, M1 iteratively pushes b onto stack 1 and c onto stack 2, reaching a configuration of the form 〈 〈q2,bra, cr〉 〉. 
From this configuration, M1 can move to q4 and pop b from stack 1. When all b’s are popped out, M1 can also pop a from 
stack 1 and finally reach the control state q5 with stack 1 empty, in a configuration of the form 〈 〈q5, ε, cr〉 〉. �
Scope-bounded runs. In the standard semantics of Mpds a pop transition (q, γ , q′) can be always executed from q when γ
is at the top of the stack. We consider here a semantics that restricts this. In particular, given k > 0, we restrict the runs 
of a Mpds such that a pop transition from stack h is allowed to execute only when the symbol at the top of the stack was 
pushed within the last k contexts of h. Thus, we place a constraint on the matching relations (i.e., the relations defined by 
pairing the pushes and the corresponding pops) that can be defined in the runs.

We introduce first some notation. We fix a run ρ = C0 →M C1 · · · →M Cm and denote ρ[i, j] = Ci →M · · · C j and |ρ| = m.
A decomposition of ρ is ρ1, . . . , ρ� where ρi = ρ[ ji−1, ji] for i ∈ [�] where 0 = j0 < . . . < j� = m. Note that the sequence 

of all h-contexts from a decomposition of ρ always forms a multiple context run of T h
M , however not all the multiple context 

runs of T h
M can be completed to form a run of M .

An h-context ρ[i, j] is maximal if it is either the entire run, i.e., i = 0 and j = m, or it: (1) contains at least a push or a 
pop transition and (2) cannot be extended by including other push or pop transitions of stack h, i.e., for each i′ ≤ i and j′ ≥ j
such that ρ[i′, j′] is still an h-context, both ρ[i′, i] and ρ[ j, j′] do not contain push or pop transitions of stack h. We observe 
that according to this definition a maximal context can be extended with an internal transition and the resulting context be 
still maximal. As an example, consider the run described in Example 1 with r = 2. The portion 〈 〈q1, ε, ε〉 〉 →M 〈 〈q3,ba, ε〉 〉
and its extension with the first transition, i.e., 〈 〈q0, ε, ε〉 〉 �M 〈 〈q3,ba, ε〉 〉, are both maximal 1-contexts. Any other extension 
would include at least a push onto stack 2 and thus it would not be a 1-context. Also, note that 〈 〈q0, ε, ε〉 〉 →M 〈 〈q1, ε, ε〉 〉
is not maximal for any stack and can be part only of a maximal 1-context. The internal transition (q2, q4) instead can be 
part of the maximal 1-context 〈 〈q2,b2a, c2〉 〉 �M 〈 〈q5, ε, c2〉 〉 or of the maximal 2-context 〈 〈q3,b2a, c〉 〉 �M 〈 〈q4,b2a, c2〉 〉. In 
general, internal moves can be added to adjacent maximal contexts still resulting into maximal contexts.

With contextsh(i, j) we denote the number of h-contexts contained in a decomposition of ρ[i, j] into maximal contexts. 
Note that contextsh(i, j) is well-defined since the number of maximal h-contexts is independent of the actual decomposition 
that is chosen.

For a stack h and indices i, j ∈ [0, m −1], (i, j) is h-matching in ρ if: i < j, Ci → Ci+1 is a transition that pushes a symbol 
onto stack h and this symbol stays onto stack h until transition C j → C j+1 pops it. When this is the case, we say that a 
push Ci → Ci+1 and a pop C j → C j+1 match each other.

A run ρ is k-scoped if for each stack h and indices i, j ∈ [0, m] such that (i, j − 1) is h-matched, we have contextsh(i, j) ≤
k. Analogously a multiple context run of T h

M , say ρ1, . . . , ρm , is k-scoped if for each i, j ∈ [m] such that there is a push in 
ρi that is matched in ρ j , we have j − i < k. Clearly, the multiple context runs obtained from a decomposition into maximal 
contexts of a k-scoped run are k-scoped too.

Example 2. Fig. 2 gives a 3-stack Mpds M2 with stack alphabets �1 = {a}, �2 = {b} and �3 = {c}. The starting state of M2 is 
q0 and its transition relation is: {(q0, q1, a), (q1, q2, b), (q2, q3, c), (q3, b, q1), (q1, a, q4)}.

A typical execution of M2 starts from the initial state q0 and pushes a on stack 1. Then it iterates the following steps: 
push b on stack 2, push c on stack 3 and pop b. After r ∈N such iterations, M2 pops a from stack 1 and reaches configu-
ration 〈 〈q4, ε, ε, cr〉 〉.

Fig. 3 gives a graphical representation of such an execution for r = 2. In the figure, we denote by dashed arrows the 
matching push and pop transitions, and use different colors to distinguish among the different threads. Full arrows capture 
the linear ordering among the transition within the run. A context is thus denoted with a chain of nodes of the same color 
linked though full arrows. Except for the middle context that is formed of a pop transition followed by a push transition 
of T 2

M2
, any other context of the run is formed of just one transition. This run is clearly 2-scoped. In fact, as shown by the 

dashed arrows, each matched push transition is paired with a pop transition within the next context of the same thread.
We observe that indeed all the runs of M2 are 2-scoped. In fact, any possible run of M2 is a prefix of the above 

described execution for some r ≥ 0. Moreover, symbols a and b are popped out at most within the next context of the 
respective stacks, and symbols c are never popped. �
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q2 q3
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Fig. 2. Graphical representation of the Mpds M2 from Example 2.

push(a) push(b) push(c) pop(b) push(b) push(c) pop(b) pop(a)

Fig. 3. Graphical illustration of the push/pop matching and context splitting of a run of the Mpds M2 from Example 2. The matching push and pop 
transitions are linked with dashed arrows and the colors blue, red and green are used to denote respectively the contexts of T 1

M2
, T 2

M2
and T 3

M2
.

Definition 2. (Scope-bounded Mpds) A k-scoped multi-stack pushdown system (k-SMpds) with n stacks is M = (k, Q , Q I , ̃�n, δ)
where k ∈N and (Q , Q I , ̃�n, δ) is a Mpds. A run of M is any k-scoped run of (Q , Q I , ̃�n, δ). �

For a Mpds M = (Q , Q I , ̃�n, δ), we often denote with (k, M) the corresponding k-SMpds (k, Q , Q I , ̃�n, δ).

4. Reachability in MPDS

In this section, we will define the reachability problem for Mpds and recall the main restrictions that have been studied 
in the literature. Then, we will discuss the state space coverage for scope-bounded runs and compare it with the other 
known restrictions.

Reachability. A target set of configurations for M is S × R1 × . . . × Rn such that S ⊆ Q and for i ∈ [n], Ri ⊆ �∗
i is a regular 

language. Given a Mpds M = (Q , Q I , ̃�n, δ) and a target set of configurations F , the reachability problem asks to determine 
whether there is a run of M from an initial configuration C0 to a configuration C ∈ F . We consider also a restricted version of 
this problem where we are only interested in the control state and not in the stack contents of the reached configurations. 
Formally, the location reachability problem for Mpds is defined as the reachability problem with respect to a target set of 
the form S × �∗

1 × . . . × �∗
n . In the following, we will also refer to the general reachability problem, where the reached 

configurations matter, as the configuration reachability problem.
It is well known (see for example [43]) that the reachability problem for multi-stack pushdown systems is undecidable 

already when only two stacks are used (two stacks suffice to encode the behavior of a Turing machine) and is decidable in 
polynomial time (namely, cubic time) when only one stack is used (pushdown systems).

Theorem 1. The (location) reachability problem is undecidable for Mpds and is decidable in cubic time for Pds.

Known decidable restrictions. Decidability can be gained by imposing some restrictions on the runs of a Mpds. Below, we 
recall the main restrictions that have been studied in the literature (the bounding parameters are assumed to be encoded 
in unary).

Bounded-context switching. A k-context run of M is a run formed as the concatenation of k contexts [1] (a similar restriction 
can be obtained by restricting to k rounds). The reachability problem within k contexts is the (location) reachability restricted 
to the sole k-contexts runs.

Theorem 2. [1,3] The (location) reachability problem within k contexts for Mpds is NP-complete.

Bounded-phase. A phase is a run of M where the pop transitions are all from the same stack (pushes onto any of the stacks 
are allowed within the same phase) [6]. Exploring all the runs of a system obtained as the concatenation of k phases ensures 
a better coverage of the state space compared to k-contexts reachability. In fact, a k-phase run can be formed of an arbitrary 
number of contexts (for example, a run that iterates k times a push onto stack 1 and a push onto stack 2 is a 2k-context 
one, while it uses only one phase). On the other side, the resulting reachability problem has higher complexity.
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q0

M3:

q1

q2

push(a)

push(b)pop(a)

pop(a)

q0

M4:

q1 q2

q3q4q5

push(a) push(a)

pop(a)

push(b)push(b)

pop(b)

Fig. 4. Graphical representation of the Mpds M3 and M4.

Theorem 3. [6,31] The location reachability problem within k phases for Mpds is 2Etime-complete.1

Ordered runs. A run of a Mpds M is ordered if the stacks of M are numbered 1, 2, . . . , n and all the pop transitions are 
executed only on the lowest numbered non-empty stack [7]. Recently a further restriction has been introduced, called 
adjacent ordered, with additional requirement that, during a phase associated to stack i push transitions are allowed only on 
stacks i − 1 and i + 1 [44]. It is known that the runs up to k phases of a Mpds can be simulated by ordered runs using 2k
stacks [45].

Theorem 4. [44,45] The location reachability problem for Mpds restricted to ordered (resp. adjacent ordered) runs is 2Etime-complete 
(resp. Exptime-complete).

Bounded path-tree. A stack tree encoding a run ρ of a Mpds M is a binary tree obtained as follows. The first transition of 
ρ labels the root, and then each following transition labels the left child of the node labeled by the previous transition 
unless it is a matched pop transition. If this is the case instead, it labels the right child of the matching push transition. 
ρ is k-path-tree if it can be encoded into a stack tree and there is a walk in the tree that, starting from the root, visits all 
the nodes such that: the nodes are discovered according to the linear order of the corresponding transitions in ρ and each 
node is not visited more than k times [8].

It is known that the runs up to d phases of a Mpds are k-path-tree with k = 2d + 2d−1 + 1 and ordered runs of a Mpds

with n stacks are k-path-tree with k = (n + 1) · 2n−1 + 1 (see [8]).

Theorem 5. [8] The location reachability problem for Mpds restricted to k-path-tree runs is Exptime-complete.

Comparing the state space coverage. In the following, we briefly discuss the scope-bounded restriction in terms of coverage 
of the reachable state space of a multi-stack pushdown system.

We start observing that though all the runs of the Mpds M2 given in Example 2 are 2-scoped, in general given a k > 0, 
k-scoped runs may not suffice to cover the entire state space of a Mpds. In fact, consider the Mpds M1 from Example 1: 
for each k ≥ 1, the configuration 〈 〈q5, ε, ck〉 〉 is reachable in the SMpds (k + 1, M1) and is not reachable in any of the SMpds

(h, M1) for h ≤ k. Thus we can state the following result.

Lemma 6. For any Mpds M and k > 0, if a configuration C ′ is reachable from C in the SMpds (k, M), then C ′ is also reachable from C
in M. Vice-versa, there is a Mpds M ′ such that for each k > 0 there is a reachable configuration C that is not reachable in the SMpds

(k, M ′).

Now, fix �1 = {a}, �2 = {b}. Let M3 be the 2-stack Mpds from Fig. 4. Since the only pop transitions are from the same 
stack, any run of M3 is 1-phase. It is simple to see that a configuration Ck = 〈 〈q2, ε,bk〉 〉 for k ∈ N , is not reachable in the 
SMpds (h, M3) for any h ≤ k.

Moreover, let M4 be the 2-stack Mpds from Fig. 4. Since along any run, the stack symbols are popped within the same 
contexts where they are pushed, any run of M4 is 1-scoped. However, a configuration Ck = 〈 〈q0,ak,bk〉 〉 for k ∈ N is not 
reachable with a run with less than 2k phases.

Thus, we get that the notions of scope-bounded reachability and phase-bounded reachability are not comparable. There-
fore, they give two orthogonal ways of exploring the state space of a Mpds.

Lemma 7. There is a Mpds M such that any reachable configuration can be reached within one phase, and for each k > 0 there is a 
configuration C that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (1, M), and for any k > 0 there is a configuration 
C that is not reachable within k phases.

1
2Etime is the class of languages accepted by Turing machines in 22O (n)

time.
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M5:

q0 q1 q2 q3 q4

q5q6q7

push(a) push(b) pop(a) push(a)

push(a)

pop(b)push(b)

push(b)

Fig. 5. Graphical representation of the Mpds M5.

push(a)

push(b)

T (a)

T (b)

where T (x) is: pop(x)
push(x)

push(x)
pop(x)

(k − 1 times)push(x)
pop(x)

push(x)
push(x)

Fig. 6. Stack tree of the M5 run reaching 〈〈q2,ak,bk〉〉.

The same result also holds with respect to (adjacent) ordered runs. In fact, consider again the 2-stack Mpds M3 from 
Fig. 4. Since all the pop transitions involve stack 1, all the runs are clearly ordered. Moreover, since there are only two 
stacks, they are also adjacent ordered. As already observed above, for each k > 0, configuration 〈 〈q2, ε,bk〉 〉 is not reachable 
in the SMpds (k, M3). On the other hand, in Example 2, any configuration 〈 〈q1,a, ε, ck〉 〉, with k > 0, is not reachable trough 
an ordered run: a b needs to be popped out from stack 2 when stack 1 is not empty. Thus we have the following result.

Lemma 8. There is a Mpds M such that any reachable configuration can be visited through (adjacent) ordered runs, and for each k > 0
there is a configuration that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (2, M), and there is a configuration that is not 
reachable through (adjacent) ordered runs.

Finally, we observe that any run ρ of the 2-stack Mpds M3 is also 3-path-tree. In fact, given ρ , the corresponding stack 
tree is formed of a leftmost path where pushes of a alternate with pushes of b, and a right child for each matched push. 
To visit the nodes of the stack tree to recover the order in ρ it suffices to visit it in a depth-first-search fashion, thus each 
node is visited at most 3 times. We also observe that any 1-scoped run of a Mpds generates a stack tree such that the 
linear ordering can be recovered by visiting it in a depth-first-search fashion (1-scoped runs can be easily simulated by a 
standard pushdown automaton since a symbol is popped from the stack only in the context in which it is pushed), and thus 
is 3-path-tree.

Furthermore, consider the 2-stack Mpds M5 from Fig. 5. Since along any run, each popped stack symbol was pushed 
within the previous context, we get that any run of M5 is 2-scoped. However, consider the run that leads to a configuration 
Ck = 〈 〈q2,ak,bk〉 〉 for k ∈ N . This run visits k − 1 times the entire loop of M5 and corresponds to the sequence of stack 
operations ab(āa2b̄b2)k−1, where we have denoted push(x) with x and pop(x) with x̄ for x ∈ {a, b}. The corresponding stack 
tree is given in Fig. 6. In order to visit its nodes according to the order given by the run, we start from the root and then 
visit its left child. Then, we go back to the right child of the root and proceed on the leftmost path of this subtree (i.e., 
T (a)). This way we discover the first āa2 sequence. Then, we go back to the left child of the root and visit its right child 
(i.e., the root of T (b)) thus discovering the first pop(b) transition. We then proceed on the leftmost path and discover two 
push(b) transitions, and so on. Observe that to match the sequence corresponding to an entire loop starting from q2 in 
M5, i.e., āa2b̄b2, we visit twice the root of the stack tree. Thus, to recover the entire sequence we visit the root exactly 
2(k − 1) + 1 times and thus configuration Ck is not reachable with a d-path-tree run for d < 2(k − 1) + 1.

Lemma 9. There is a Mpds M such that any reachable configuration can be visited through 3-path-tree runs, and for each k > 0 there 
is a configuration that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (2, M), and for any k > 0 there is a configuration 
that is not reachable through by a k-path-tree run of M.

5. Solving location reachability for SMPDS

In this section, we address the location reachability problem for SMpds. We start by defining an abstraction, called 
thread interface, that summarizes multiple context runs of a thread. Each thread interface is a tuple of pairs of control 
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Thread 1 Thread 2

q0
push(a)−−−−→ q1

push(b)−−−−→ q2 −→ q3
push(c)−−−−→ q4 −→ q5

q5
push(a)−−−−→ q6

pop(a)−−−→ q7
pop(b)−−−→ q8

push(b)−−−−→ q9 −→ q10
pop(c)−−−→ q11

push(d)−−−−→ q12 −→ q13

q13
pop(b)−−−→ q14 −→ q15

push(c)−−−−→ q16 −→ q17

Fig. 7. A sample 2-scoped run of a Mpds with two stacks.

states representing the starting and the ending control states of the contexts that occur in the corresponding runs. Thus an 
interface exactly captures the interaction of a thread with the rest of the system in some runs and therefore it is a suitable 
abstraction for solving location reachability by first exploring the computations of the single threads. However, since the 
stack content is entirely abstracted away, we will need a richer abstraction to deal with the general reachability problem 
that will be addressed in the next section.

For the rest of this section we fix a bound k > 0, a k-SMpds M = (k, Q , Q I , ̃�n, δ) and �̃ = ⋃n
i=1 �i .

5.1. Thread interfaces

We start defining the notion of thread interface. Then, we show that when restricting to k-scoped runs, the whole 
computation of a single thread across unboundedly many contexts can be indeed captured by composing thread interfaces 
of size at most k. Moreover, under some conditions, the thread interfaces of a thread can be composed with the thread 
interfaces of the other threads to summarize entire runs of a Mpds.

A thread interface is essentially an ordered tuple of pairs denoting each the starting and the ending control states of a 
thread context. The contexts are listed in the order they occur in a run assuming that the first context starts with an empty 
stack and each of the following contexts starts with the stack content that is left by the preceding one. In other words, a 
thread interface stores the starting and the ending control states of the contexts of a multiple context run, and thus captures 
all the multiple context runs that share this “interface”. Formally, we have:

Definition 3. (thread interface) For each h ∈ [n], a h-thread interface of M is a possibly empty tuple of pairs I =
〈in j, out j〉 j∈[m] , for some m ∈N (the dimension of I , also denoted dim(I)), such that if m > 0 there exists a multiple context 
run ρ1, . . . , ρm of T h

M where for every j ∈ [m], ρ j = 〈 〈in j, w j〉 〉 �h
M 〈 〈out j, w ′

j〉 〉.

For the rest of this section, we use as running example a Mpds M5 with a run as in Fig. 7. We observe that the run 
is 2-scoped. From the above definition, J1 = (〈q0, q3〉, 〈q5, q10〉, 〈q13, q15〉) is a 1-thread interface of M5 of dimension 3 and 
J2 = (〈q3, q5〉, 〈q10, q13〉, 〈q15, q17〉) is a 2-thread interface of M5 of dimension 3.

For a thread interface I = 〈in j, out j〉 j∈[m] , a prefix of I is any 〈in j, out j〉 j∈[m′] with m′ ≤ m and a suffix of I is any 
〈in j, out j〉 j∈[i,m] with i ≥ 1. Directly from the definition, we get that any prefix of a thread interface is also a thread in-
terface. Clearly this is not true in general for the suffixes since some stack symbol that is popped in a context of a suffix 
might have been pushed in one of the contexts of the omitted prefix.

Proposition 10. Any prefix of a h-thread interface is also a h-thread interface.

For i = 1, 2, let Ii = 〈ini
j, outi

j〉 j∈[mi ] be a h-thread interface of M , for some h ∈ [n]. We define two internal operations 
over thread interfaces of a given thread. With I1 �1 I2 we denote the tuple obtained by appending I2 to I1. Formally, 
I1 �1 I2 = 〈in j, out j〉 j∈[m1+m2] where in j = in1

j and out j = out1
j for j ∈ [m1], and inm1+ j = in2

j and outm1+ j = out2
j for j ∈ [m2]. 

The other operation is a variation of �1 where the last pair of I1 is composed with the first pair of I2. It is defined 
when I1 and I2 are both not empty. Formally, if m1, m2 > 0 and out1

m1
= in2

1, then we denote with I1 �2 I2 the tuple 
〈in j, out j〉 j∈[m1+m2−1] where in j = in1

j and out j = out1
j for j ∈ [m1 − 1], inm1 = in1

m1
, outm1 = out2

1, and inm1+ j = in2
j+1 and 

outm1+ j = out2
j+1 for j ∈ [m2 − 1].

Directly from the definition of thread interface we get that both compositions define thread interfaces.

Lemma 11. Let Ii = 〈ini
j, outi

j〉 j∈[mi ] be a h-thread interface of M, for some h ∈ [n] and i = 1, 2.

• I1 �1 I2 is a h-thread interface of dimension m1 + m2 .
• If out1

r1
= in2

1 , then I1 �2 I2 is a h-thread interface of dimension m1 + m2 − 1.

As observed in Section 3, a run decomposition naturally defines multiple context runs and thus also thread interfaces. 
Given a k-scoped run ρ of a Mpds M with n stacks and let ρ1, . . . , ρ� be a decomposition of ρ into contexts, for h ∈ [n] the 
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h-thread interface I = 〈in j, out j〉 j∈[m] defined by ρ1, . . . , ρ� is such that there are exactly m h-contexts in the decomposition 
and the j-th h-context in the decomposition starts at in j and ends at out j , for j ∈ [m].

A canonical thread interface for ρ is a thread interface defined by a decomposition into maximal contexts. Interestingly, 
it is possible to capture each canonical thread interface as the composition by �1 and �2 of thread interfaces of bounded 
dimension. In fact, for the k-scoped restriction, in each run a push onto stack h is either matched within the next k
maximal h-contexts (including the current one) or never. As an example, consider again the 2-scoped run from Fig. 7. 
Note that J1 and J2 are canonical thread interfaces for it, and J1 = (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉) and J2 =
(〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉) (the interfaces used in the compositions are all of dimension at most 2).

The above property is formally stated in the following lemma.

Lemma 12. Let k ∈N , M be a Mpds with n stacks, ρ be a k-scoped run of M, and for h ∈ [n], I be a canonical h-thread interface for 
ρ .

There exist h-thread interfaces I0, . . . , Is of dimension at most k such that I = I0 � j1 I1 . . . � js Is with j1, . . . js ∈ [2].

Proof. Let I = 〈in j, out j〉 j∈[m] be a canonical h-thread interface for a run ρ . Thus, there exists a decomposition of ρ with 
exactly m maximal h-contexts, say ρ1, . . . , ρm , such that ρ j starts at in j and ends at out j , for j ∈ [m].

We claim that if m > k, there are two h-thread interfaces I1 and I2 both of dimension less than m such that either 
I = I1 �1 I2 or I = I1 �2 I2. We consider two cases.

The first case is when there are no push transitions in ρ1 that are matched by a pop transition outside ρ1. Since no 
stack content pushed within ρ1 is used later, we get that I2 = 〈in j, out j〉 j∈[2,m] is a h-thread interface. From Proposition 10, 
I1 = 〈in1, out1〉 is also a h-thread interface. Since both have dimension less than m and I = I1 �1 I2, we are done with this 
case.

In the other case, i.e., when there is a push transition that is matched outside ρ1, we take the first such push transition 
in ρ1. Denote with t its matching pop transition. Since ρ is k-scoped, t must occur in some ρi with i ≤ k. Also, according 
to the stack behavior, if a portion ρ[ j, j′] of ρ starts with a push transition of stack h and ends with a pop transition of 
the same stack, then any other transition involving stack h within ρ[ j, j′] must be matched and the matching transition 
must also occur within ρ[ j, j′]. Thus, let ρ ′

i and ρ ′′
i be the two contexts obtained by splitting ρi at the control state 

q reached after taking transition t . From Proposition 10, we get that I1 = (〈in1, out1〉, . . . , 〈ini−1, outi−1〉, 〈ini, q〉 is a h-
thread interface. Moreover, since no stack content that is pushed in ρ1, . . . , ρi−1, ρ ′

i is popped in ρ ′′
i , ρi+1, . . . , ρm , I2 =

(〈q, outi〉, 〈ini+1, outi+1〉, . . . , 〈inm, outm〉) is also a h-thread interface. Also, from i ∈ [2, k] and k < m, we have that i ∈ [2, m −
1] must hold. Thus, we get that both interfaces have dimension less than m, thus I = I1 �2 I2 holds and the claim is proved 
also in this case.

By recursively applying the above claim to the resulting thread interfaces until we get only thread interfaces of dimension 
at most k, we get the lemma. �

Note that the above lemma does not hold if I is an arbitrary (non-canonical) thread interface. In fact, in a non-canonical 
thread interface we can have several consecutive pairs that correspond to portions of a same maximal context. Thus, in 
order to capture such thread interfaces the bound k may not suffice.

Thread interfaces can be composed to summarize entire runs of a given Mpds. We recall that each pair of a thread 
interface essentially gives the control state update that is effected by a corresponding context of the underlying multiple 
context run. Thus starting from an initial state, we can simulate a run by iteratively selecting pairs of the thread interfaces 
to update the current control state, and the run can be constructed by stitching together the contexts corresponding to the 
selected pairs. Therefore, a set of thread interfaces summarizes a set of runs of a Mpds if we can order all their pairs such 
that: (1) each pair can be stitched to the following one, i.e., the ending control state of a pair matches the starting control 
state of the following one, and (2) the pairs from a same thread interface occur in the same order as within the thread 
interface. This condition is formally captured by the following definition.

For h ∈ [n], let Ih = 〈inh
j , outh

j 〉 j∈[mh] be a h-thread interface of M and denote D = ⋃
h∈[n]{〈h, j〉 | j ∈ [mh]}. For �, �′ ∈ [n], 

we say that I1, . . . , In can be stitched from in�
1 through out�

′
m�′ if there exists a 1-to-1 mapping next : D \ {〈�′, m�′ 〉} →

D \ {〈�, 1〉} such that for each 〈h, j〉 ∈D \ {〈�′, m�′ 〉}:

1. outh
j = inh′

j′ where 〈h′, j′〉 = next(h, j) (i.e., next returns a pair that can be stitched to the given pair);

2. denoting next1(x) = next(x) and nexti(x) = next(nexti−1(x)) for i > 1, if nexti(h, j) = 〈h, j′〉 for some i ∈ N then j < j′
(i.e., the ordering induced by next is consistent with the local ordering within each thread interface).

Note that since next is a 1-to-1 mapping, it defines a linear ordering among all the pairs of I1, . . . , In .
Fig. 8 illustrates the stitching of linear interfaces J1 and J2 in our running example. In the figure, map next is denoted 

with the dashed edges. Precisely, next is defined as next(1, j) = 〈2, j〉 for j ∈ [3] and next(2, j) = 〈1, j + 1〉 for j ∈ [2]. 
The sequence of pairs defined by next is 〈q0, q3〉, 〈q3, q5〉, 〈q5, q10〉, 〈q10, q13〉, 〈q13, q15〉, 〈q15, q17〉, which corresponds to the 
perfect interleaving of the two thread interfaces J1 and J2. Thus, according to the above definition, J1 and J2 can be 
stitched from q0 through q17.
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〈 q0 ,

J1

q3 〉

〈 q5 , q10 〉

〈 q13 , q15 〉

〈 q3 ,

J2

q5 〉

〈 q10 , q13 〉

〈 q15 , q17 〉

Fig. 8. Stitching of linear interfaces.

As already observed we can show that runs of Mpds can be fully characterized by tuples of thread interfaces.

Theorem 13. Let M be a Mpds with n stacks, and q be a control state of M. Then, there is a run of M that reaches q iff there are 
I1, . . . , In such that:

1. for h ∈ [n], Ih is a (canonical) h-thread interface of M, and
2. I1, . . . , In can be stitched from an initial state of M through q.

Proof. The forward direction follows directly from the definitions. In fact, consider a run ρ from an initial state q0 to q. 
Fix a decomposition of ρ into contexts and take the corresponding h-thread interfaces Ih for each h ∈ [n]. Define next to 
match the ordering of pairs according to the fixed decomposition. Clearly, each pair in the sequence can be stitched to 
the following one, and next is a 1-to-1 mapping and is consistent with the pair ordering within each thread interface Ih . 
Therefore, I1, . . . , In can be stitched from q0 through q.

For the converse direction, let Ih = 〈inh
j , outh

j 〉 j∈[mh] be a h-thread interface of M for h ∈ [n] and suppose that I1, . . . , In

can be stitched from an initial state q0 of M through q. Thus, there are �, �′ ∈ [n] such that in�
1 = q0, out�

′
m�′ = q and denoting 

D = ⋃
h∈[n]{〈h, j〉 | j ∈ [mh]}, there is a 1-to-1 mapping next : D \ {〈�′, m�′ 〉} → D \ {〈�, 1〉} such that (1) outh

j = inh′
j′ where 

〈h′, j′〉 = next(h, j) and (2) if nexti(h, j) = 〈h, j′〉 for some i ∈N then j < j′ . For h ∈ [n] and j ∈ [mh], from Definition 3, we 
can take contexts 〈 〈inh

j , uh
j 〉 〉 �h

M 〈 〈outh
j , vh

j 〉 〉 such that uh
1 = ε and for j < mh , uh

j+1 = vh
j .

Denote m = ∑
h∈[n] mh . We construct inductively on j ∈ [m] a run of M by stitching together the above contexts in the 

order given by next.
We start with the context corresponding to the first pair of I� , i.e., 〈 〈in�

1, ε〉 〉 ��
M 〈 〈out�1, v�

1〉 〉. This clearly gives the run 
ρ1 = 〈 〈q0, ε, . . . , ε〉 〉 �h1

M 〈 〈q1, w1
1, . . . , wn

1〉 〉 where h1 = �, q1 = out�1, w�
1 = v�

1 and wh
j = ε for h 
= � (recall that q0 = in�

1).

For the inductive step, denote ρ j = 〈 〈q0, ε, . . . , ε〉 〉 �h1
M . . . �h j

M 〈 〈q j, w1
j , . . . , wn

j 〉 〉 with j > 0 and suppose that the last 

context of ρ j corresponds to the i j-th pair of Ih j . Thus, q j = out
h j

i j
holds.

Now, let 〈h j+1, i j+1〉 = next(h j, i j). From property (1) of mapping next, we get that out
h j

i j
= in

h j+1
i j+1

and thus q j = in
h j+1
i j+1

. 

Hence, in order to execute the context 〈 〈in
h j+1
i j+1

, u
h j+1
i j+1

〉 〉 �h j+1
M 〈 〈out

h j+1
i j+1

, v
h j+1
i j+1

〉 〉 from configuration 〈 〈q j, w1
j , . . . , wn

j 〉 〉 we just 

need to show that w
h j+1
j = u

h j+1
i j+1

holds.

For this we observe that from property (2) of next, in ρ j the ordering of the contexts of a thread conforms to the 
ordering of the corresponding pairs in the thread interface. In particular, if i j+1 = 1, 〈 〈in

h j+1
i j+1

, u
h j+1
i j+1

〉 〉 �h j+1
M 〈 〈out

h j+1
i j+1

, v
h j+1
i j+1

〉 〉 is 

the first context of thread T
h j+1
M in ρ j , otherwise, the previous context of T

h j+1
M corresponds to the i j+1 − 1-th pair of Ih j+1 . 

Clearly, w
h j+1
j = ε in the first case and w

h j+1
j = v

h j+1
i j+1−1 in the second case. Since by definition uh j+1

1 = ε and uh j+1
i j+1

= v
h j+1
i j+1−1, 

we have that w
h j+1
j = u

h j+1
i j+1

must hold.

To conclude the proof we observe that next is a 1-to-1 mapping that is not defined on 〈�′, m�′ 〉. Thus, the last context of 
ρm must correspond to this pair, and therefore qm = out�

′
m�′ = q, that concludes the proof. �

5.2. A fixed-point algorithm for location reachability

In this section, we present a fixed-point algorithm to solve the location reachability problem for k-SMpds that is based 
on the computation of canonical thread interfaces.

The algorithm. One way to solve this problem is to compute nondeterministically n thread-interfaces, one for each thread, and 
then by Theorem 13 check whether they form an M computation reaching a target control state. Unfortunately, this would 
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Algorithm 1.

Initialization

I = {(q, τ∅) | q ∈ Q I }

Simulation

Let (q, τ ) ∈ I and q′ such that first(τ (T i
M )) = 〈q, q′〉, for some i ∈ [n].

Add to I the pair (q′, τ ′) where

τ ′(t) =
{

tail(τ (T i
M )) if t = T i

M

τ (t) otherwise.

Thread-interface progression

Let (q, τ ) ∈ I and τ (T i
M ) be an empty thread interface for some i ∈ [n].

Add to I any pair (q, τ ′) where

τ ′(t) =
{

I if t = T i
M

τ (t) otherwise

and I is a thread interface of T i
M such that dim(I) ≤ k.

Fig. 9. Rules of Algorithm 1 (fixed-point algorithm solving the location reachability problem for SMpds).

only yield a semi-algorithm as we do not know, a priori, the number of contexts that are needed for each thread in order 
to conclude that the target is not reachable. However, according to Lemma 12 such thread interfaces can be computed by 
portions of bounded dimension. Moreover, the conditions of Theorem 13 can be checked by such portions. In particular, the 
fixed-point algorithm we propose will take for each thread a thread interface of bounded dimension, then it will advance 
in the simulation of a run of the Mpds by stitching the contexts of these interfaces until one of them will be entirely 
consumed (this corresponds to advancing in the run by macro-steps covering each an entire context). At this point, a new 
thread interface of bounded dimension is taken for the corresponding thread and the simulation is resumed. The iterations 
halt as soon as a target control state is reached or no new simulations are possible. Since the number of thread interfaces 
is finite for a given bound, the algorithm always terminates.

In the following we will refer to this algorithm as Algorithm 1. In greater detail, Algorithm 1 computes pairs of the 
form (q, τ ) where q is a control state (the state reached after the last simulated context) and τ is a map that assigns a 
(possibly empty) thread-interface suffix to each thread. At each step of the algorithm, we either consume the first pair of a 
thread-interface suffix (simulation rule) or append a thread interface (thread-interface progression rule).

The simulation rule can be applied to any pair of the form (q, τ ) such that there is a thread-interface suffix mapped by 
τ whose first pair starts with q. For a thread-interface suffix I = 〈in j, out j〉 j∈[i,m] , we denote with first(I) the first pair of 
I , i.e., 〈ini, outi〉, and with tail(I) the rest of I , i.e., 〈in j, out j〉 j∈[i+1,m] . An application of the simulation rule to (q, τ ) with 
τ (t) = 〈in j, out j〉 j∈[m] for a thread t and q = in1 would yield (out1, τ ′) where τ ′(t) = tail(τ (t)) and τ ′(t′) = τ (t′) for t 
= t′ .

The thread-interface progression rule is very simple: from (q, τ ) such that τ (t) is empty for some thread t , we can add 
(q, τ ′) such that τ ′(t) is any thread interface of t of dimension at most k and τ ′(t′) = τ (t′) for t′ 
= t .

We denote with I the set of pairs computed by the algorithm and with τ∅ the map that assigns each thread with an 
empty thread-interface. The set I is initialized to all pairs of the form (q, τ∅) where q is an initial control state.

The detailed rules of Algorithm 1 are given in Fig. 9. The thread interfaces of dimension at most k can be computed in a 
standard way, see for example [12], and thus we omit it. The algorithm halts as soon as a control state in the target set is 
reached or no more tuples can be added to the set I . In the first case, it outputs YES, otherwise it outputs NO. Termination 
of Algorithm 1 is guaranteed since there are finitely many control states and thread interfaces (and thus thread-interface 
suffixes).

Correctness of the algorithm. To show correctness, we will argue that the fixed-point algorithm described above discovers the 
existence of a run ρ that leads to a target control state by computing the thread interfaces (one for each thread) for a 
maximal decomposition of ρ .

We start by illustrating this with an example. Consider again the run of Fig. 7 along with the corresponding canonical 
thread interfaces J1 = (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉) and J2 = (〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉). Fig. 10 gives a 
sequence of steps of our algorithm that mimics this run using the above decomposition of J1 and J2 via �1 and �2. Starting 
from (q0, τ∅) through two applications of the thread-interface progression rule (denoted with P�−→ in the figure), we add the 
pair (q0, τ1) where τ1(T 1

M) = (〈q0, q3〉, 〈q5, q8〉) and τ1(T 2
M) = (〈q3, q5〉, 〈q10, q13〉) (τ1 maps each thread to the first thread 

interface in the considered decomposition of respectively J1 and J2). Then, through two applications of the simulation 
rule (denoted with S�−→ in the figure), we add (q5, τ2) where τ2(T 1 ) = (〈q5, q8〉) and τ2(T 2 ) = (〈q10, q13〉). Now, from 
M M
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(
q0,

[∅
∅

])
P�−→

(
q0,

[
(〈q0,q3〉, 〈q5,q8〉)

∅
])

P�−→
(

q0,

[
(〈q0,q3〉, 〈q5,q8〉)

(〈q3,q5〉, 〈q10,q13〉)
])

S�−→

(
q3,

[
(〈q5,q8〉)

(〈q3,q5〉, 〈q10,q13〉)
])

S�−→
(

q5,

[
(〈q5,q8〉)

(〈q10,q13〉)
])

S�−→
(

q8,

[ ∅
(〈q10,q13〉)

])
P�−→

(
q8,

[
(〈q8,q10〉, 〈q13,q15〉)

(〈q10,q13〉)
])

S�−→
(

q10,

[
(〈q13,q15〉)
(〈q10,q13〉)

])
S�−→

(
q13,

[
(〈q13,q15〉)

∅
])

S�−→
(

q15,

[∅
∅

])
P�−→

(
q15,

[ ∅
(〈q15,q17〉)

])
S�−→

(
q17,

[∅
∅

])

Fig. 10. An example of application of the rules of Algorithm 1.

(q5, τ2) first 〈q5, q8〉 is consumed, then (〈q8, q10〉, 〈q13, q15〉) is added for thread T 1
M , and finally 〈q8, q10〉 is consumed. This 

corresponds to simulate the maximal context of T 1
M from q5 through q10. Also, note that the two consecutive applications 

of the simulation rule concern the same thread. This captures the semantics of composition �2, and thus for thread T 1
M the 

sequence of rule applications from Fig. 10 computes J1 exactly as (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉). For thread T 2
M , 

the sequence from Fig. 10 computes J2 as (〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉) (the simulation of the second thread interface 
starts after that a context of the other thread has been simulated).

Theorem 14. Let M be an Mpds with n stacks, q be an M control state, I be the set computed by Algorithm 1 and k ∈N . Then, q is 
reachable in a k-scoped run of M iff (q, τ ) ∈ I for some map τ .

Proof. We start proving the forward direction.
Let ρ be a k-scoped run of M ending at a configuration with control state q. We show that (q, τ∅) is added to I by our 

algorithm.
First, recall that from Theorem 13, there must be I1, . . . , In and a 1-to-1 mapping next such that: (1) for h ∈ [n], Ih is 

a canonical h-thread interface of M , and (2) I1, . . . , In can be stitched from an initial state of M through q in the ordering 
given by next.

Starting from (q0, τ∅), a sequence of applications of the rules of our algorithm that leads to add (q, τ∅) to I can be 
obtained by consuming the pairs of I1, . . . , In in the ordering given by next. In fact, from Lemma 12, for h ∈ [n], we get 
Ih = Ih,0 � jh,1 . . . � jh,sh

Ih,sh where Ih,0, . . . , Ih,sh are h-thread interfaces of dimension at most k and jh,1, . . . , jh,sh ∈ [2]. 
Thus, each thread interface Ih is explored by adding via the thread-interface progression rule its bounded portions: we first 
add Ih,0, then we add Ih,1 when Ih,0 is entirely consumed, and so on. The run is simulated by consuming the pairs in 
the added interfaces. Note that for h ∈ [n], each pair 〈q, q′〉 of Ih is either (1) a pair also of some Ih,i , or (2) is split into 
a pair 〈q, q′′〉 at the end of some Ih,i and a pair 〈q′′, q′〉 at the beginning of Ih,i+1, and jh,i+1 = 2 (i.e., Ih,i and Ih,i+1 are 
composed through �2). Thus to consume the pairs from this second case, we need two applications of the simulation rule 
interleaved with an application of the thread-interface progression rule. For the other pairs one application of the simulation 
rule suffices. Recall also that the simulation rule updates the control state, with the ending state of the consumed pair. Thus, 
once all the pairs of I1, . . . , In will be consumed, the control state is updated to q and therefore the pair (q, τ∅) is added to 
I .

For the other direction, we show a stronger property, that is, if π is the sequence of applications of the algorithm 
rules that leads to add (q, τ ) to I then there is a k-scoped run ρ of M that reaches q and can be decomposed into 
contexts ρ1, . . . , ρm such that: denoting ini and outi respectively the starting and ending control states of ρi for i ∈ [m], 
(in1, out1), . . . , (inm, outm) is the ordered sequence of control state pairs consumed in the applications of the simulation 
rule in π . We show this property by induction on the length of π .

The base case is trivial. For the initialization rule, (q, τ∅) ∈ I for each initial control state q of M , and clearly q is 
reachable in M (within zero steps).

Suppose now by induction that the above statement holds for each pair that is added to I with at most d > 0 rule 
applications. Consider a sequence π of d + 1 rule applications that adds (q, τ ) to I from a pair (q′, τ ′). The interesting case 
is when (q, τ ) is added from (q′, τ ′) by applying the simulation rule. In fact, if (q, τ ) is added from (q′, τ ′) by applying 
the thread-interface progression rule, we get that q = q′ holds and thus the property holds directly from the induction 
hypothesis.

If (q, τ ) is added by applying the simulation rule, from the definition, there must be a pair 〈q′, q〉 that starts one of 
the thread-interface suffixes mapped by τ ′ . Denote with I such suffix and with T the corresponding thread. Moreover, let 
J = I ′ �1 I be the thread interface that was added in the last thread progression rule applied to thread T along π .

If I ′ is empty, i.e., I is exactly the thread interface added by the thread progression, then by definition there is a multiple 
context run ρ I corresponding to I . Thus, we apply the induction hypothesis to (q′, τ ′) and denote ρ ′ the corresponding 
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k-scoped run of M . Define ρ as the run obtained by appending the first context of ρ I to ρ ′ . Since no previously pushed 
symbol is popped in the added context, ρ is still k-scoped. Moreover, we append to ρ ′ a context that matches the pair of 
control states used in the simulation rule, thus by applying the induction hypothesis we get that ρ matches the sequence 
of control state pairs used in the application of simulation rules in π , and we are done with this case. For the remaining 
case, i.e., when I ′ is not empty, we reason analogously, except for arguing that ρ is k-scoped. In fact, the context we add 
is not the first one in a multiple context run, and thus can pop stack symbols introduced in the previous contexts of such 
run. However, since we bound the size of the thread interfaces to k, the popped symbols were certainly pushed in the last 
k contexts of thread T and thus ρ is k-scoped, that concludes the proof. �

As for the computational complexity of our fixed-point algorithm, we observe the following. Computing a thread interface 
takes time polynomial in |Q | (reachability of single-stack pushdown systems) and the number of different tuples of the 
form 〈p j, q j〉 j∈[m] where p j, q j ∈ Q and m ≤ k is O (|Q |2k). Thus the total number of different pairs (q, τ ) that can be 
added to I is O (|Q |2kn+1). Further, the initialization takes constant time, and from each tuple at most n simulation steps 
(one for each thread interface suffix) and O (|Q |2kd) thread-interface progression steps can be taken where d is the number 
of components of the tuple containing an empty thread interface (we can select a new thread interface for each one of 
the empty components). Moreover, the number of different tuples that have an empty thread interface in the same d
components is O (|Q |2k(n−d)+1), thus the overall number of different thread-interface progression steps from all such tuples 
is O (|Q |2kn+1). Therefore, the total number of different thread progression steps that can be taken is O (2n |Q |2kn+1), and 
thus our fixed point algorithm can be implemented to take O (2n |Q |2kn+1) time.

We further observe that we can implement our algorithm to use only polynomial space in the number of threads and 
the bound k. In fact, at each iteration we can store only the current pair not all the set I and select nondeterministically 
the next rule to apply (in this case thread interfaces are picked by first guessing a tuple and then checking that it is indeed 
a thread interface). The algorithm will halt as soon as we compute a pair with control state in the target set or we have 
reached a number of iterations that equals the maximum number of pairs that can be added to I . This shows that the 
location reachability problem for SMpds is in Pspace.

This upper bound is also tight for both parameters. In fact, by fairly standard constructions we can reduce the member-
ship problem for a Turing machine working in polynomial space to both the location reachability problem for an n-stack 
2-SMpds and a 2-stack 2k-SMpds. In the first case, we use the stacks as registers and maintain the configuration of the 
Turing machine one cell for each stack. A cell update will require first to read the content of the corresponding stack by 
popping it, and then to push the new content onto it. Cells are updated in a round-robin fashion simulating a scan of the 
tape from left to right. Control states are used guide the round robin and store the content of the neighbor cells: the content 
of the left cell is read, while that of the right cell is nondeterministically guessed and then checked when reading it. Since 
each symbol that is pushed is popped in the next context of the same stack, the described SMpds is 2-scoped. In the second 
case, the tape content is maintained into a stack and its updated by moving it into the other stack. Thus each pop from one 
stack is followed by a push onto the other stack, and thus the maximum number of maximal contexts between a push and 
a matching pop of the same stack is 2k.

We get the following theorem (where k is assumed to be encoded in unary).

Theorem 15. The location reachability problem for k-SMpds is Pspace-complete, and hardness can be shown both with respect to the 
number of stacks and the bound k.

6. Solving the configuration reachability problem for SMPDS

In this section, we address the reachability problem for SMpds for an arbitrary set of target configurations given as the 
cross product of regular languages of stack contents (one for each stack). We will show that reachability in this case is still
Pspace-complete as for the location reachability problem addressed in the previous section.

Since we need to account also for the stack contents, we introduce a new abstraction called layered stack automaton. For 
a thread T , an �-layered stack automaton captures the top portion of its stack which corresponds to the symbols that were 
pushed within the last � contexts of T . The automaton is structured into layers that are added incrementally by applying for 
each layer a saturation procedure similar to the one given in [5] for standard (one-stack) pushdown systems. We recall that 
iterating such a saturation procedure a bounded number of times is quite straightforward and was already used in [1] to 
give a decision algorithm for the reachability problem up to k context-switches. However, in our case, we need to account 
for unboundedly many context-switches and the notion of layered stack automaton by itself does not suffice (we would 
need to use layered stack automata with unbounded number of layers).

Since we restrict to k-scoped computations, only the symbols that were pushed within the last k contexts are used in 
the pop transitions. Thus, we can use �-layered stack automata with � ≤ k to keep track of the meaningful top portion 
of the stack during a computation. We hence relate the layered automata via a successor relation capturing that a layered 
automaton A is a successor of a layered automaton B if A is obtained by adding a new layer to B via the saturation 
procedure.

The bounded layered automata connected via the successor relation form a thread automaton, that is, a finite automaton 
that accepts for a thread all the stack contents that can occur in a configuration that is reachable along a k-scoped run. In 
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a thread automaton, the states keep track of the contexts of a thread and, via the layered automaton, of the portion of the 
stack that was pushed within it. The automaton explores the contexts backwards and at each context that yields a portion 
w of the stack that is not popped out in the rest of the run, it simulates the top layer of the current layered automaton by 
reading w . We observe that a run of a thread automaton also captures a thread interface by listing its pairs in the reverse 
order.

To solve the reachability problem for k-SMpds, we thus construct a finite automaton R that for each tuple of the form 
(w1, . . . , wn) such that 〈 〈q, w1, . . . , wn〉 〉 is a configuration that is reachable within a k-scoped run, it accepts at least an 
interleaving of w1, . . . , wn . This automaton uses as components a thread automaton for each thread and synchronizes all 
of them by picking the next context (among the possible next ones) such that it can be stitched to the last processed one. 
Thus, assuming that the stack contents of the target set are expressed by finite automata, we can modify R to simulate 
such automata in parallel with the thread automata by a standard cross product, that reduces the configuration reachability 
to standard reachability for finite automata.

For the rest of this section we fix a bound k > 0, a k-SMpds M = (k, Q , Q I , ̃�n, δ), and � = ⋃n
i=1 �i .

6.1. Layered stack automata

For � ≥ 0, an �-layered stack automaton A of M is essentially a finite automaton structured into (� + 1) layers whose set 
of states contains � copies of each q ∈ Q (one for each layer) along with a new state qF which is the sole final state and 
the sole state of layer 0. The input alphabet is �h for some stack h. Transitions are only between states of the same layer 
or from a layer to a lower layer, i.e., they are of the form (s, γ , s′) where γ ∈ �h ∪ {ε} and the layer of s′ is not larger than 
the layer of s (note that layered automata may have ε-transitions). Moreover, there are no transitions leaving from qF and 
every state is either isolated or connected to qF by a run. Formally, we have:

Definition 4. (layered stack automaton) Given � ≥ 0, an �-layered stack automaton A of M over �h is a finite automaton 
(S, �h, 
, S0), where h ∈ [n], �h is the input alphabet and:

1. S = ⋃�
i=0 Si is the set of states where S0 = {qF } and Si = {〈q, i〉 | q ∈ Q }, for i ∈ [�];

2. 
 ⊆ S × (�h ∪ {ε}) × S is the transition relation such that if (s, γ , s′) ∈ 
, for s ∈ Si , s′ ∈ S j , then i > 0 and i ≥ j;
3. for each state s ∈ S , either there is a run from s to qF or s is isolated (i.e., there are no transitions involving s);
4. there is at least a state s ∈ S� that is not isolated.

For i ∈ [0, �], Si denotes the layer i of A. S� is called the top layer and � is referred to as the top-layer index. For states 
s1, s2, the language accepted by A from s1 to s2 is denoted L(A, s1, s2). Moreover, if s1 = 〈q, �〉 and s2 = qF , we also denote 
L(A, s1, s2) simply as L(A, q) and say that a configuration 〈 〈q, w〉 〉 is accepted by A if w ∈L(A, q). �

Note that two �-layered stack automata over the same alphabet �h may differ only on the set of transitions and the only 
layered stack automaton over the alphabet �h of top-layer index 0 has only the state qF and no transitions. In the following, 
we denote with Aε

h the layered stack automaton of top-layer index 0 with input alphabet �h . Moreover, we often refer to a 
state 〈q, i〉 of a layered stack automaton as the copy of q in layer i.

6.1.1. Saturation procedure
Let A be an �-layered stack automaton A with alphabet �h .
With Sat(A) we denote the layered stack automaton A′ over �h , obtained by applying to A the saturation procedure 

from [5] with respect to the internal transitions and the push and pop transitions involving stack h. The procedure is 
applied such that the new transitions that are added are all leaving from the top-layer states and only states in the top 
k layers are involved (according to the k-scoped limitation). Namely, let � > 0 be the top layer index (if � = 0, Sat does 
nothing), the saturation procedure consists of repeating the following steps until no more transitions can be added (we let 
γ ∈ �h in the following):

• for an internal transition (q, q′) ∈ δ: (〈q′, �〉, ε, 〈q, �〉) is added to set of transitions provided that 〈q, �〉 is connected to 
qF ;

• for a push transition (q, q′, γ ) ∈ δ: (〈q′, �〉, γ , 〈q, �〉) is added to set of transitions provided that 〈q, �〉 is connected to 
qF ;

• for a pop transition (q, γ , q′) ∈ δ: (〈q′, �〉, ε, 〈q′′, �′〉), with � − k < �′ ≤ �, is added to the set of transitions provided that 
there is a path of A′ labeled γ from 〈q, �〉 to a state 〈q′′, �′〉 (note that such a path may contain an arbitrary number of 
ε-edges; also, 〈q′′, �′〉 is not isolated, and thus, connected to qF by definition).

Note that all the transitions that are added in the above saturation procedure either stay within the top layer or are 
from a top-layer state to a lower layer state. In particular, the transitions that cross layers are added only through a pop 
transition and thus are ε-transitions. Moreover, the ending state of an added transition is connected to qF through a path. 
Thus, we get:
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Proposition 16. if A is an �-layered stack automaton then Sat(A) is also an �-layered stack automaton.

We further remark that since the saturation procedure adds only transitions to states of the form 〈p, �′ 〉 for p ∈ Q and 
�′ ∈ [� − k + 1, �], no direct transition to qF is added even if � < k.

In the following, we will be interested in layered automata whose layers match the contexts of k-scoped multiple con-
text runs. We say that an �-layered automaton A matches a k-scoped multiple context run ρ1, . . . , ρ� of T h

M if: for every 
configuration 〈 〈q, y〉 〉 of ρ� such that y ∈ L(A, q), there is an accepting run of A over y where for every i ∈ [�] and every 
symbol γ of y that was pushed in context ρi , γ is read through a transition within layer i.

The crucial properties of the above saturation procedure are stated in the following lemma.

Lemma 17. Let M be a k-SMpds, A and A′ be �-layered stack automata of M over �h, and 〈q, �〉 be the sole state which is not isolated 
in the top layer of A. If A′ = Sat(A) then:

1. if there is a path in A′ from a state 〈p1, �〉 to a state 〈p2, �〉 labeled with x ∈ �∗
h , then there is a context 〈 〈p2, ε〉 〉 �h

M 〈 〈p1, x〉 〉 (i.e., 
paths in the top-layer summarize contexts);

2. for every y′ ∈ L(A′, q′), there exists a context 〈 〈q, y〉 〉 �h
M 〈 〈q′, y′〉 〉 such that y ∈ L(A, q) (i.e., each configuration of thread T h

M
which is accepted by A′ is reachable from a configuration accepted by A);

3. for every k-scoped multiple context run ρ1, . . . , ρ� , where ρ� = 〈 〈q, y〉 〉 �h
M 〈 〈q′, y′〉 〉, if y ∈ L(A, q) and A matches ρ1, . . . , ρ�

then y′ ∈ L(A′, q′) (i.e., the last context of any k-scoped multiple context run of T h
M that is matched by A always ends with a 

configuration accepted by A′ whenever it starts from a configuration accepted by A).

Proof. We prove parts 1 and 2 by induction on the number of transitions that are added in the saturation procedure. In 
the following, for d ≥ 0, we will denote with Ad the �-layered automaton resulting by adding d transitions to A though the 
saturation procedure.

We start with part 1. The base case is trivial since there are no transitions at the top layer of A.
For the induction step, suppose that the statement holds after that d ≥ 0 transitions have been added in the saturation 

procedure and let e = (〈q1, �〉, a, 〈q2, �〉), for a ∈ �h ∪ {ε}, be the transition that is added next.
Let π be any top-layer path of Ad+1 containing e, i.e., π = π1.e.π2, and let x = x1.a.x2 be the word labeling π with xi

labeling πi for i ∈ [2]. Denoting 〈p1, �〉 and 〈p2, �〉 respectively the starting and ending states of π , since π1 and π2 are also 
paths of Ad we can apply the induction hypothesis and get 〈 〈q1, ε〉 〉 �h

M 〈 〈p1, x1〉 〉 and 〈 〈p2, ε〉 〉 �h
M 〈 〈q2, xi〉 〉, thus we only 

need to show the existence of a context 〈 〈q2, ε〉 〉 �h
M 〈 〈q1,a〉 〉. We do this by case inspection on the rule that is applied to 

add e.
If e is added by a push or an internal transition of M , by applying such a transition we clearly get 〈 〈q2, ε〉 〉 →h

M 〈 〈q1,a〉 〉
and thus 〈 〈q2, ε〉 〉 �h

M 〈 〈q1,a〉 〉 holds. If e is added by a pop transition, from the corresponding rule of the saturation 
procedure, there must be a pop transition of the form (p, γ , q1) and a path π ′ of Ad labeled with γ from 〈p, �〉 to 
〈q2, �〉 (note that we are assuming that π lays entirely in the top layer). By applying the induction hypothesis to π ′ , 
we get that 〈 〈q2, ε〉 〉 �h

M 〈 〈p, γ 〉 〉 holds. Thus extending this context by applying the pop transition (p, γ , q1), we get 
〈 〈q2, ε〉 〉 �h

M 〈 〈p, γ 〉 〉 →h
M 〈 〈q1, ε〉 〉 that concludes this part of the proof (recall that a = ε in this case).

We prove now part 2 of the lemma. The base case trivially holds since all the languages L(A, q′) for q′ 
= q are empty.
For the induction step, suppose that the statement holds after that d ≥ 0 transitions have been added in the saturation 

procedure and let e be the transition that is added next.
Pick any y′ ∈ L(Ad+1, q′). We recall that, by definition, in an �-layered stack automaton cross-layer transitions can only 

take to states of lower indexed layers. Thus, a path labeled with y′ from 〈q′, �〉 through qF can be split into three parts: a 
first part π1 that stays all within the top layer, a transition e′ = (〈q1, �〉, a, 〈q2, i〉) to a lower indexed layer i < �, and final 
part π2 that leads to qF . According to this splitting, y′ can be decomposed as x.a.z. Observe that since π1 is from 〈q′, �〉
through 〈q1, �〉, we can apply part 1 of the lemma, and thus there is a context σ = 〈 〈q1, ε〉 〉 �h

M 〈 〈q′, x〉 〉.
If e′ 
= e, since any transition added by the saturation procedure starts from a top-layer state, then e must occur in π1

and thus a.z ∈ L(Ad, q′
1). By the induction hypothesis, we get that there exists a context 〈 〈q, y〉 〉 �h

M 〈 〈q1,a.z〉 〉 such that 
y ∈ L(A, q). By combining this with context σ above, we get 〈 〈q, y〉 〉 �h

M 〈 〈q1,a.z〉 〉 �h
M 〈 〈q′, x.a.z〉 〉, and thus the statement 

holds in this case.
Now, suppose that e′ = e, i.e., the transition leaving the top layer is e. We recall that in the saturation procedure the 

crossing layer transitions are only added through a pop transition and in this case the added transition is labeled with 
ε (i.e., a = ε). Thus, according to the pop-transition rule, there must be a pop transition of M of the form (p, γ , q1) and 
there is a path of Ad from 〈p, �〉 to 〈q2, i〉 that is labeled with γ . Hence, there is a path of Ad from 〈p, �〉 that is labeled 
with γ .z (note that the saturation procedure does not add transitions that do not have at least an endpoint at the top 
level and π2 starts from layer i < �), and therefore, γ .z ∈L(Ad, p). By applying the induction hypothesis, we get that there 
is a context 〈 〈q, y〉 〉 �h

M 〈 〈p, γ .z〉 〉. We can then extend this context with the pop transition thus obtaining the context 
〈 〈q, y〉 〉 �h

M 〈 〈q1, z〉 〉. Again by combining this with context σ above, we get 〈 〈q, y〉 〉 �h
M 〈 〈q1, z〉 〉 �h

M 〈 〈q′, x.a.z〉 〉 (recall a = ε), 
and thus the statement holds also in this case.



S. La Torre et al. / Information and Computation 275 (2020) 104588 17
For part 3 of the lemma, we proceed by induction on the number d of transition steps in a context that starts from 
configuration 〈 〈q, y〉 〉 with y ∈L(A, q).

The base case (zero transitions) trivially holds for q = q′ and y = y′ .
For the induction step, consider a context σ of the form 〈 〈q, y〉 〉 �h

M 〈 〈p, z〉 〉 →h
M 〈 〈q′, y′〉 〉 with d + 1 transitions and such 

that y ∈ L(A, q). By the induction hypothesis, z ∈ L(A′, p). If transition 〈 〈p, z〉 〉 →h
M 〈 〈q′, y′〉 〉 is an internal one, then y′ = z

and the saturation procedure would add a transition from 〈q′, �〉 to 〈p, �〉 in A′ labeled with ε. Similarly, if the transition 
pushes a symbol γ onto stack h, then y′ = γ .z and a transition from 〈q′, �〉 to 〈p, �〉 labeled with γ is added in A′ . In 
both cases, from z ∈ L(A′, p) we get y′ ∈ L(A′, q′). In the remaining case, i.e., when 〈 〈p, z〉 〉 →h

M 〈 〈q′, y′〉 〉 is a pop transition 
(p, γ , q′), then z = γ y′ and since σ is by hypothesis a context of a k-scoped run, γ was pushed onto the stack in a context 
ρi with � −k < i ≤ � (i.e., γ was pushed either in this context or in one of the previous k −1 contexts). Since by the induction 
hypothesis z ∈ L(A′, p) and A matches the k-scoped multiple context run ρ1, . . . , ρ� , there is a path of A′ labeled γ from 
〈p, �〉 to a state 〈q′′, i〉 and a path from 〈q′′, i〉 to qF labeled y′ . By the saturation algorithm, a transition (〈q′, �〉, ε, 〈q′′, i〉)
must be added to A′ and therefore y′ ∈L(A′, q′). Thus also part 3 holds, and therefore the lemma holds. �
6.1.2. Successor relation for layered automata

Given a bound m, by Lemma 17 we can construct a set of layered automata that accept all the stack contents that can 
occur in a configuration of any k-scoped run of M with at most m-maximal contexts. For this, we define an operation that 
adds a new layer to a layered automaton A and connects through an ε transition a state from the top layer of the resulting 
automaton to a non-isolated state of the top layer of A.

Formally, for an �-layered automaton A with � > 0 and a top-layer state 〈q, �〉 of A that is connected to qF , with 
Add(A, p, q) we denote the (� + 1)-layered stack automaton obtained from A by adding the transition (〈p, � + 1〉, ε, 〈q, �〉). 
We extend this function also to Ah

ε , and denote with Add(Ah
ε, p, qF ) the 1-layered stack automaton containing only the 

transition (〈p, 1〉, ε, qF ).
For an �-layered stack automaton over �h with � > 0 and control states p, q of M where 〈q, �〉 is connected to qF in A, 

we define the successor of A by (p, q), denoted Succ(A, p, q), as Sat(Add(A, p, q)). Consistently with what we have done for 
Add, we extend this notion to Ah

ε and denote Succ(Ah
ε, p, qF ) = Sat(Add(Ah

ε, p, qF )).
According to Lemma 17, if A accepts contents of stack h that can be reached in the final configuration of a k-scoped 

run ρ of M and matches the corresponding multiple context run, q is the control state of the last h-context in ρ and p is 
the control state of the ending configuration of ρ , then Succ(A, p, q) accepts all the stack contents that can be reached by 
extending ρ with a context of stack h that starts with a configuration with control state p.

We iterate the definition of Succ and define Succ(A, 〈pi, qi〉i∈[m]) inductively as Succ(A, p1, q1), if m = 1, and 
Succ(A′, pm, qm) where A′ = Succ(A, 〈pi, qi〉i∈[m−1]), otherwise.

From Proposition 16 and the above definitions, we get:

Proposition 18. If A is an �-layered stack automaton, then Succ(A, 〈pi, qi〉i∈[m]) is an (� + m)-layered stack automaton.

As already observed, from the definition of Sat, all the transitions that are added start from top-layer states and no 
transition is deleted. Thus we have:

Proposition 19. Let A be an �-layered automaton. If A′ = Succ(A, 〈pi, qi〉i∈[m]) then for each p and �p ≤ �: (〈p, �p〉, τ , 〈q, �q〉) is a 
transition of A if and only if it is also a transition of A′.

As a corollary of the above proposition we have that if a layered automaton A′ is obtained by iterating the function Succ
from a layered automaton A, then the set of configurations accepted from the copy of q in layer �′ of A is the same as the 
one accepted from the copy of q in the same layer of A′ .

Corollary 20. Let A be an �-layered automaton. If A′ = Succ(A, 〈pi, qi〉i∈[m]) then L(A, 〈q, �′〉, qF ) = L(A′, 〈q, �′〉, qF ) for each q
and �′ ≤ �.

Moreover, again from the definition of Sat, the transitions over a stack symbol are added only for the push transitions 
and are internal to the top layer. Thus in the construction of Succ(Ah

ε, 〈pi, qi〉i∈[�]) the addition of these transitions will occur 
in different layers matching a sequence of contexts ρ1, . . . , ρ� where ρi = 〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�]. Thus we 
have:

Proposition 21. Let A = Succ(Ah
ε, 〈pi, qi〉i∈[�]). A matches any k-scoped multiple run ρ1, . . . , ρ� of T h

M where w1 = ε and ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�].

The following property is crucial in our solution for the reachability problem.
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Theorem 22. Let M be a k-SMpds and A = Succ(Ah
ε, 〈pi, qi〉i∈[�]).

A is an �-layered stack automaton such that:
wi+1 ∈ L(A, 〈qi+1, i〉, qF ) for i ∈ [�] if and only if a k-scoped multiple context run ρ1, . . . , ρ� of T h

M exists such that ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�].

Proof. From Proposition 18, we get that A is an �-layered stack automaton. Denoting Am = Succ(Ah
ε, 〈pi, qi〉i∈[m]) for m ∈ [�].

By Corollary 20, to complete the proof we only need to show by induction on m ≥ 1 that:
wm+1 ∈ L(Am, qm+1) if and only if a k-scoped multiple context run ρ1, . . . , ρm of T h

M exists such that ρi = 〈 〈pi, wi〉 〉 �h
M〈 〈qi+1, wi+1〉 〉 for i ∈ [m].

For the base case, i.e., m = 1, we observe that since A1 = Succ(Ah
ε, p1, q1), if w2 ∈ L(A1, q2) then there must be a path 

from 〈q2, 1〉 through 〈p1, 1〉 labeled with w2 (recall that p1 is connected to q1 = qF through an ε-transition). From part 1 of 
Lemma 17, we get that 〈 〈p1, ε〉 〉 �h

M 〈 〈q2, w2〉 〉. Vice-versa, if there is a run 〈 〈p1, ε〉 〉 �h
M 〈 〈q2, w2〉 〉, from part 3 of Lemma 17, 

since ε ∈L(A1, p1) we get that w2 ∈L(A1, q2).
For the induction step, we assume that the theorem holds for m − 1. Denote A′ = Add(Am−1, pm, qm). Clearly, by defini-

tion, Am = Sat(A′) holds.
Assume first that wm+1 ∈ L(Am, qm+1). From part 2 of Lemma 17, then there is a context ρm = 〈 〈pm, wm〉 〉 �h

M〈 〈qm+1, wm+1〉 〉 such that wm ∈L(A′, pm). Since A′ is obtained from Am−1 by adding an ε-transition from pm to qm , we also 
get that wm ∈L(Am−1, qm). By applying the induction hypothesis, we get that a k-scoped multiple context run ρ1, . . . , ρm−1
of T h

M exists such that ρi = 〈 〈pi, wi〉 〉 �h
M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m −1]. Thus, we get that there is a k-scoped multiple context 

run ρ1, . . . , ρm of T h
M such that ρi = 〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m].
For the other direction, assume that there exists a k-scoped multiple context run ρ1, . . . , ρm of T h

M such that ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m]. From the induction hypothesis we get that wm ∈ L(Am−1, qm), and thus wm ∈
L(A′, pm). Since there is a context 〈 〈pm, wm〉 〉 �h

M 〈 〈qm+1, wm+1〉 〉, from Proposition 21 and part 3 of Lemma 17 then also 
wm+1 ∈L(Am, qm+1) and thus the lemma holds. �

Directly from the definition of thread interface, we get that for states qi and pi as in the above lemma, 〈pi, qi+1〉i∈[m] is 
a h-thread interface of M . Thus, the following corollary holds.

Corollary 23. Let M be a k-SMpds. If Succ(Ah
ε, 〈pi, qi〉i∈[m]) is defined, then the tuple 〈pi, qi+1〉i∈[m] is a h-thread interface of M.

6.2. Capturing thread configurations for unboundedly many contexts: thread automata

We start giving a property that will be used to construct an automaton that accepts the thread configurations that are 
reachable in k-scoped multiple context runs with any number of contexts.

For an �-layered automaton A, denote with Topk(A) the layered automaton obtained from A by keeping only the top 
k layers (along with layer 0). Since in a layered automaton each state is either isolated or connected to qF by a run, by 
removing the layers of A we preserve this property for the remaining states in Topk(A). Namely, we define Topk(A) as 
follows. If � ≤ k, Topk(A) is A, otherwise Topk(A) is the k-layered automaton whose transition set is the smallest set such 
that: if (〈q, j〉, γ , s) is a transition of A with j > � − k, then (〈q, j − � + k〉, γ , s′) is a transition of Topk(A) where s′ is 
〈q′, j′ − � + k〉, if s = 〈q′, j′〉 for some j′ ∈ [� − k + 1, k], and is qF , otherwise.

We recall that for an �-layered automaton A, Sat adds only transitions from a top-layer state to states of the form 〈p, �′〉
where p ∈ Q and �′ ∈ [� − k + 1, �], and no direct transition to qF is added even if � < k. Thus directly from the definitions 
we get the following property:

Proposition 24. Given an �-layered automaton A and denoting A′ = Topk(A):
Topk(Succ(A′, 〈pi, qi〉i∈[m])) = Topk(Succ(A, 〈pi, qi〉i∈[m])).

We use functions Succ and Topk to define the notion of thread automaton. The thread automaton of a thread T h
M , denoted 

Ah,M , is designed to accept all and only the stack contents w of T h
M that can occur in a k-scoped multiple context run of 

T h
M . For this, Ah,M explores backwards the contexts of T h

M that can occur in such a run and simulates the transitions of 
layered automata connected through Succ (which according to Theorem 22 guarantees that w can be reached on a multiple 
context run of T h

M ). By exploiting Propositions 19 and 24, this can be done with layered automata with at most k layers 
using function Topk to keep the number of layers within the bound k.

The states of Ah,M are of the form (d, p, A, q, q′) where d ∈ [k], A is an �-layered stack automaton with � ≤ k, and p, q, 
and q′ are control states of M . Each state (d, p, A, q, q′) denotes contexts starting from q and ending at q′ , moreover:

• A captures the top portions of the stack that are reachable by such contexts;
• p is the current control state, and if d = 1, it is updated by simulating A on the top-layer copy of p, otherwise it stays 

unchanged;
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• d is used to guide the simulation through the chain of Succ-connected layered automata; in particular, if d > 1, Ah,M
just moves to a state corresponding to a previous context (recall that contexts are explored backwards) updating the 
A component via the composed function Topk ◦ Succ and decreasing d by 1; as soon as d = 1 holds, Ah,M simulates A
starting from the top-layer copy of p until a transition that crosses the top layer is taken; when this occurs, denoting 
with � the top layer of A and with �′ the layer of the target of the crossing transition, d is then updated to � − �′ + 1, 
thus enforcing that the d component will evaluate 1 again when a context corresponding to layer �′ of A is reached.

Formally, the thread automaton Ah,M = (Q h,M , Q 0
h,M , �h, 
h,M , Q F

h,M) is such that:

1. the set of states Q h,M contains all the tuples of the form (d, p, A, q, q′) where d ∈ [0, k], A is an �-layered stack au-
tomaton on alphabet �h with � ∈ [k], and p, q, q′ ∈ Q are such that the copies of q and q′ in the top layer of A are not 
isolated (and thus connected to qF );

2. the set of initial states Q 0
h,M ⊆ Q h,M is the set of all the states of the form (1, p, A, q, q′) where the top-layer copy of p

in A is not isolated and p = q′;
3. the set of final states Q F

h,M ⊆ Q h,M is the set of all the states of the form (1, p, A, q, q′) where A is 1-layered, p = q

and A = Succ(Ah
ε, p, qF );

4. 
h,M ⊆ Q h,M × (�h ∪{ε}) × Q h,M is the set of all the transitions (s1, τ , s2) where s1 /∈ Q F
h,M (i.e., there are no transitions 

from a final state) and denoting si = (di, pi, Ai, qi, q′
i) for i ∈ [2], one of the following cases applies (in the following 

description, if a component of s2 is not mentioned then it is equal to the same component of s1):

[simulation] d1 = 1 and (〈p1, �〉, τ , 〈p2, �〉) is a transition of A1 where � is the top-layer index of A1;
[simulation end] d1 = 1, there is a transition (〈p1, �1〉, τ , 〈p2, �2〉) of A1 where �2 < �1 and �1 is the top-layer index 

of A1 (i.e., the A1 transition crosses the top layer), and d2 = �1 − �2 + 1 (i.e., there is no further stack content 
to parse in this context and in the next �1 − �2 − 1 contexts that will be processed);

[context update] τ = ε, d1 > 1, A1 = Topk(Succ(A2, q1, q′
2)) and d2 = d1 − 1 (i.e., there is no stack content to read from 

this context thus the automaton just moves to a previous context).

The following lemma states a property on the structure of the accepting runs of Ah,M .

Lemma 25. Any accepting run ρ of Ah,M can be decomposed as

ρs
1,ρ

e
1,ρc

1, . . . ρ
s
�−1,ρ

e
�−1,ρ

c
�−1,ρ

s
�

where each ρs
i is a possibly empty sequence of simulation transitions, each ρe

i is a single simulation-end transition and each ρc
i is a 

non-empty sequence of context-update transitions.

Proof. We observe that each run starts from a state of the form (1, p, A, q, q′) and thus only simulation and simulation-end 
transitions can be taken. As soon as a simulation-end transition is taken, Ah,M enters a state with d ≥ 2 as first component 
and thus the next transition can only be a context-update one. Since each context-update transition decreases by 1 the 
value of this state component, after d − 1 context-update transitions a state with 1 in its first component is entered and 
thus only simulation and simulation-end transitions are possible. Finally, since a final state has 1 as first component, an 
accepting run must end either with a context-update or a simulation transition (recall ρs

� is possibly empty). �
We observe that along a run of Ah,M the layered automaton in the states can only change by taking context-update 

transitions. Let ρs
1, ρ

e
1, ρc

1, . . . ρ
s
�−1, ρ

e
�−1, ρ

c
�−1, ρ

s
� be a decomposition of a run ρ as above. We denote with lsa(ρ) the 

sequence A1 . . . Am of the layered stack automata occurring in ρc
1, . . . ρc

�−1.
The following theorem states the wished property for tread automata.

Theorem 26.

1. For a layered stack automaton A = Succ(Ah
ε, 〈pi, qi〉i∈[m]), if w ∈ L(A, q) then w is accepted by Ah,M starting from 

(1, q, Topk(A), pm, q).
2. If ρ is an accepting run of Ah,M over w starting from (1, q, Am, p, q) and with lsa(ρ) = Am . . . A1 , then there is a sequence 

〈pi, qi〉i∈[m] such that w ∈L(A′
m, q) and A j = Topk(A′

j) for j ∈ [m], where A′
j = Succ(Ah

ε, 〈pi, qi〉i∈[ j]) for j ∈ [m].

Proof. We start showing part 1. Denoting A = Succ(Ah
ε, 〈pi, qi〉i∈[m]) assume w ∈ L(A, q).

We recall that Sat adds only transitions from a top layer state to states of the form 〈p, �′〉 where p ∈ Q , �′ > 0 and 
�′ ∈ [� − k + 1, �]. Moreover, Succ(Ah

ε, 〈pi, qi〉i∈[m]) is defined provided that q1 = qF . Thus, each run of A accepting w from 
〈q, m〉 must be of the form
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〈p′
1,m1〉 w1� 〈q′

1,m1〉 ε→ 〈p′
2,m2〉 w2� . . . 〈p′

d,md〉 wd� 〈q′
d,md〉 ε→ qF

where w = w1 w2 . . . wd , m = m1, p′
1 = q, md = 1, q′

d = p1, and 0 < mi − mi+1 < k for i ∈ [d − 1].
For j ∈ [m], denote A j = Succ(Ah

ε, 〈pi, qi〉i∈[ j]) and A′
j = Topk(A j).

Moreover, denote qF = 〈p′
d+1, 0〉, md+1 = 0, and for j ∈ [d], ρ j = 〈p′

j, m j〉 w j� 〈q′
j, m j〉 ε→ 〈p′

j+1, m j+1〉. For j ∈ [d], we thus 

get from Proposition 19 that ρ j is also a run of Am j and hence by the definition of Topk , ρ ′
j = 〈p′

j, k j〉 w j� 〈q′
j, k j〉 ε→ 〈p′

j+1, � j〉
is a run of A′

m j
where � j = m j+1 − m j + k j and k j ≤ k is the top layer index of A′

m j
.

Using the above runs ρ ′
j we can construct a corresponding run π of Ah,M over w as the composition of runs π1, . . . , πd

defined as follows.
The starting state of π1 is s1 = (1, p′

1, A
′
m1

, pm1 , p′
1), that is, we wish to simulate A′

m1
starting from the top-layer copy of 

p′
1 and A′

m1
= Topk(Am1 ) where Am1 = Succ(Am1−1, 〈pm1 , qm1 〉) (recall m = m1).

For each j ∈ [d − 1], we construct π j as a run of the form

s j
w j�Ah,M s′

j
ε→Ah,M s′′

j
ε→Ah,M . . .

ε→Ah,M s j+1.

The first portion s j
w j�Ah,M s′

j is obtained by simulation transitions that correspond to the transitions of the run 〈p′
j, k j〉 w j�A′

m j

〈q′
j, k j〉. In particular, we let s j = (1, p′

j, A
′
m j

, pm j , qm j+1) and s′
j = (1, q′

j, A
′
m j

, pm j , qm j+1).

The next transition s′
j

ε→Ah,M s′′
j is a simulation-end transition that captures transition 〈q′

j, k j〉 ε→A′
m j

〈p′
j+1, � j〉. Thus, by 

definition s′′
j is of the form (k j − � j + 1, p′

j+1, A
′
m j

, pm j , qm j+1).

For the final part s′′
j

ε→Ah,M . . .
ε→Ah,M s j+1 we use context-update transitions. In particular, from the definitions, we have 

that k j − � j = m j − m j+1. Thus, from Ai+1 = Succ(Ai, pi+1, qi+1) for i ∈ [m − 1] and Proposition 24, we get that Ah,M has 
context-update transitions to form the following run (where we have denoted r j = m j − m j+1):

s′′
j = (r j + 1, p′

j+1, A′
m j

, pm j ,qm j+1)
ε→ (r j, p′

j+1, A′
m j−1, pm j−1,qm j ) . . .

ε→ (1, p′
j+1, A′

m j+1
, pm j+1 ,qm j+1+1) = s j+1.

We construct the remaining run πd by simply using simulation transitions. From the construction of π1, . . . , πd−1, πd

must start from sd = (1, p′
d, A

′
md

, pmd , qmd+1). We recall that md = 1, thus sd = (1, p′
d, A

′
1, p1, q2). From 〈p′

d, kd〉 wd�A′
1
〈q′

d, kd〉, 

we get (1, p′
d, A

′
1, p1, q2) 

wd�Ah,M (1, q′
d, A

′
1, p1, q2). Since q′

d = p1, A′
1 is 1-layered and A′

1 = Succ(Ah
ε, p1, qF ), we get that 

(1, q′
d, A

′
1, p1, q2) is final.

We thus have defined a run π of Ah,M over w = w1 . . . wd that starts from s1 = (1, p′
1, A

′
m1

, pm1 , p′
1) and ends at a final 

state. We recall that p′
1 = q, m1 = m, Am = A and A′

m = Topk(Am). Thus indeed s1 = (1, q, Topk(A), pm, q) and we are done 
with this part of the proof.

Now we show part 2 of the theorem. For this suppose that w is accepted by Ah,M and let ρ = sm
τm−→Ah,M . . .

τ1−→Ah,M s0
be an accepting run over w where si = (di, p′

i, Ai, pi, qi) for i ∈ [m].
Let ρs

1, ρ
e
1, ρc

1, . . . ρ
s
d−1, ρ

e
d−1, ρ

c
d−1, ρ

s
d be a decomposition of ρ as in Lemma 25, and let w = w1 . . . wd the corresponding 

decomposition of w .
We have the following facts:

1. sm is an initial state, thus dm = 1 and p′
m = qm must hold;

2. s0 is a final state, thus d0 = 1 and A0 = Succ(Ah
ε, p0, qF ) must hold;

3. for j ∈ [d], ρs
j is of the form sm j

w j�Ah,M sm′
j

where for i ∈ [m′
j, m j]: di = 1, Ai = Am j , pi = pm j and qi = qm j (i.e., the 

only component that is updated in the simulation transitions is p′
i ); note that m1 = m and m′

d = 0;

4. for j ∈ [d − 1], ρe
j is of the form sm′

j

ε→Ah,M sm′
j−1, that is,

(1, p′
m′

j
, Am j , pm j ,qm j )

ε→Ah,M (k j + 1, p̄ j, Am j , pm j ,qm j )

where k j = �′
j − �′′

j > 0 and 〈p′
m′

j
, �′

j〉 
ε→Am j

〈p̄ j, �′′
j 〉;

5. for j ∈ [d − 1], ρe
j is of the form sm′

j−1
ε�Ah,M sm j+1 , that is,

(k j + 1, p̄ j, Am j , pm j ,qm j )
ε→Ah,M (k j, p̄ j, Am′

j−2, pm′
j−2,qm′

j−2) . . .

ε→Ah,M (1, p̄ j, Am j+1 , pm j+1 ,qm j+1)

where for i ∈ [m j+1, m′ − 2], Ai+1 = Topk(Succ(Ai, pi+1, qi)).
j
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We denote Bd = A0 and for j ∈ [d − 1], B j = Succ(B j+1, 〈pi+1, qi〉i∈[m j+1,m′
j−2]). By an inductive application of Proposi-

tion 24 we can show that Am j = Topk(B j) for j ∈ [d]. Thus to conclude the proof we only need to show that w ∈ L(B1, p′
m)

(recall m = m1). We prove this by induction showing that w j . . . wd ∈L(B j, p′
m j

) for j ∈ [d].
From fact 3 above, we have smd

wd�Ah,M s0 and since Bd = A0 = Succ(Ah
ε, p0, qF ), we get that the base case wd ∈

L(Bd, qmd ) clearly holds.
Suppose now that w j+1 . . . wd ∈ L(B j+1, p′

m j+1
) holds. From Corollary 20, we get w j+1 . . . wd ∈ L(B j, 〈p′

m j+1
, �〉, qF )

where � is the top-layer index of B j+1. Moreover, again from fact 3 above sm j

w j�Ah,M sm′
j

and from fact 4 sm′
j

ε→Ah,M sm′
j−1

(recall that p′
m′

j−1 = p′
m j+1

). Thus, from the definition of Ah,M , we get 〈p′
m j

, �′
j〉 

w j�Am j
〈p′

m′
j
, �′

j〉 
ε→Am j

〈p′
m j+1

, �′′
j 〉 where 

�′
j is the top layer index of Am j . Also, from fact 5 and the definition of B j , we get k j = �′

j − �′′
j = m′

j − 1 − m j+1. From 
Proposition 18, the top layer index of B j is �′ = � + m′

j − 1 − m j+1 (recall that � denotes the top layer index of B j+1), 
and thus k j = �′ − �. By the inductive application of Proposition 24 mentioned above, we have Am j = Topk(B j), and thus 

〈p′
m j

, �′〉 w j�B j 〈p′
m′

j
, �′〉 ε→B j 〈p′

m j+1
, �〉. Therefore by applying the inductive hypothesis we get w j . . . wd ∈ L(B j, p′

m j
) that 

concludes the proof. �
6.3. Solving configuration reachability

By Theorem 26 and Corollary 23, each run of a thread automaton corresponds to a thread interface (that is explored 
backwards along the run). Thus to solve the configuration reachability problem we can construct a finite automaton R
that composes the thread automata, one for each thread of the Mpds, synchronizing them on context-switches. This would 
clearly achieve the effect of stitching together the corresponding thread interfaces and thus by Theorem 13, it would suffice 
to witness the existence of a corresponding k-scoped run of the Mpds.

Concerning to the technical construction, automaton R operates essentially in two modes: a simulation mode and a 
context-switching mode. In the simulation mode, R executes for one of the thread automata a sequence of simulation tran-
sitions followed by a simulation-end transition, and then switches to the context-switching mode. In the context-switching 
mode, it attempts to stitch (backwards) to the computation of M simulated so far, the context shown in the current state 
of one of the thread automata and if it succeeds it updates the state of M reached so far and the state of the thread au-
tomaton by taking a context-update transition (that will give the next context to use for this thread). From this mode, R
switches back to the simulation mode if one of the thread automata can execute either a simulation or a simulation-end 
transition. To implement these behaviors, we use states of the form (h, q, ̄q1, . . . , ̄qn) where h denotes the mode, q is the 
state of M (backwards) reached so far, and q̄1, . . . , ̄qn are the current states of the thread automata. We use h = 0 to denote 
the context-switching mode, and h ∈ [n] to denote the thread automaton currently executed in the simulation mode. The 
acceptance condition requires that we have reached an initial state of M and all the thread automata have reached a final 
state.

Formally, denoting Ah,M = (Q h,M , Q 0
h,M , �h, 
h,M , Q F

h,M) the thread automaton for thread T h
M , we define R as the finite 

automaton (S, I, �, 
, F ) where:

• the set of states S is [0, n] × Q × ∏
i∈[n] Q i,M ;

• the set of initial states I is the set of all tuples of the form (h, q, ̄q1, . . . , ̄qn) where h ∈ [n], q̄i = (1, pi, Ai, qi, pi) ∈ Q 0
i,M

for i ∈ [n] and ph = q;
• the set of final states F is the set of all states of the form (h, q, ̄q1, . . . , ̄qn) where q ∈ Q I (i.e., q is an initial state of M) 

and q̄i ∈ Q F
i,M for i ∈ [n];

• for i ∈ [2], denote si = (hi, qi, ̄qi,1, . . . , ̄qi,n) where for j ∈ [n], q̄i, j = (di, j, pi, j, Ai, j, qi, j, q′
i, j), the set of transition 
 is 

the set of the tuples (s1, τ , s2) such that s1 /∈ F and one of the following cases applies (in the following description, if 
a component of s2 is not mentioned then it is equal to the same component of s1):

[simulation mode] h1 > 0 and the following holds:

– d1,h1 = 1 and q̄1,h1

τ→Ah,M q̄2,h1 (i.e., this is either a simulation or simulation-end transition of Ah1,M );
– if d2,h1 > 1 then h2 = 0 (change to context-switching mode);

[context-switching mode] h1 = 0, τ = ε and the following holds:
– if there exists h ∈ [n] such that d1,h = 1 then h2 = h (change to simulation mode),
– otherwise (keep staying in context-switching mode), there exists a h ∈ [n] such that:

∗ d1,h > 1 and q̄1,h
τ→Ah,M q̄2,h (i.e., this is a context-update transition of Ah,M );

∗ q′
1,h = q1 (i.e., the current context of Ah,M ends with the state of M reached so far and thus we can stitch 

it to the current computation);
∗ q2 = q1,h (i.e., the state of M reached so far is updated to the initial state of the current context of Ah,M );
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Given two words v, w ∈ 
∗ , with v � w we denote the shuffle product of v and w , that is, the set of words 
v1 w1 . . . vm wm where = v1 . . . vm , w = w1 . . . wm and vi, wi ∈ 
∗ . With �i∈[n]wi we denote its generalization to n words 
w1, . . . , wn . These operators generalize to languages as usual and we omit it here. We get the following theorem that relates 
k-scoped runs to R runs.

Theorem 27. Given q ∈ Q and wi ∈ �∗ for i ∈ [n], the following statements are equivalent:

1. There is a k-scoped run of the form 〈 〈q0, ε, . . . , ε〉 〉 �M 〈 〈q, w1, . . . , wn〉 〉 with q0 ∈ Q I .
2. There is a run of R over a word w ′ ∈ �i∈[n]wi that starts from an initial state of the form (h, q, ̄q1, . . . , ̄qn) and ends at a final 

state of the form (h′, q0, ̄q′
1, . . . , ̄q

′
n).

Proof. We start showing the implication from 1 to 2. Consider a k-scoped run ρ of the form 〈 〈q0, ε, . . . , ε〉 〉 �M

〈 〈q, w1, . . . , wn〉 〉. By taking a splitting of ρ into maximal contexts, we can define n k-scoped multiple context runs, say 
ρ1, . . . , ρn , one for each thread. For i ∈ [n], let ρi be formed of ρi,1, . . . , ρi,mi where ρi, j = 〈 〈pi, j, wi, j〉 〉 � j

M 〈 〈qi, j+1, wi, j+1〉 〉
for j ∈ [mi]. Clearly, for i ∈ [n], wi,mi+1 = wi must hold.

Denoting Ai = Succ(Ai
ε, 〈pi, j, qi, j〉 j∈[mi ]), from Theorem 22 we get that wi ∈ L(Ai, qi,mi+1) and thus by part 1 of Theo-

rem 26, wi is accepted by Ai,M from a state of the form (1, qi,mi+1, Topk(A), pi,mi , qi,mi+1).
We can construct an accepting run of R over an interleaving of the words w1, . . . , wn that reflects the reversed order 

of the considered splitting of ρ . The run starts from a state of the form (h, q, ̄q1, . . . , ̄qn) where each q̄i corresponds to the 
context ρi,mi and h ∈ [n] is such that the context of q̄h ends with qh,mh+1. Then, for each i ∈ [n], R simulates the transitions 
of an accepting run of Ai,M over wi . For this, it alternates between the thread automata according to the reversed order of 
the considered splitting of ρ . As soon as the first maximal context of ρ is processed, R updates the state of M reached so 
far with the starting state q0 of ρ , and since all the thread automata have reached their respective final states, this state is 
also final and we are done with the proof of the implication from 1 to 2.

For the implication from 2 to 1, consider a run ρ of R over a word w ′ ∈ �i∈[n]wi that starts from an initial state of the 
form (h, q, ̄q1, . . . , ̄qn) and ends at a final state of the form (h′, q0, ̄q′

1, . . . , ̄q
′
n). Recall that the stack alphabets �i for i ∈ [n]

are disjoint. Thus, from ρ we can uniquely define the runs ρi of Ai,M over wi for i ∈ [n]. From the construction of R, we 
have that each ρi is accepting, starts from q̄i and ends at q̄′

i .
Denoting q̄i = (1, q, A, p, q) and lsa(ρi) = Ai,mi . . . Ai,1, from part 2 of Theorem 26 there is a sequence 〈pi, j, qi, j〉 j∈[mi ]

such that A′
i, j = Succ(Ai

ε, 〈pi, j, qi, j〉i∈[ j]) and Ai, j = Topk(A′
i, j) for j ∈ [mi], and wi ∈L(A′

i,mi
, q).

Thus, by Theorem 22, there is a k-scoped multiple context run ρi,1, . . . , ρi,mi of T i
M such that ρi, j = 〈 〈pi, j, wi, j〉 〉 �i

M〈 〈qi, j+1, wi, j+1〉 〉 for j ∈ [mi] and wi,mi+1 = wi .
To conclude the proof, we observe that we can stitch together the contexts from the k-scoped multiple context runs 

according to the (reversed) sequence of contexts explored in the run ρ while in the context-switching mode thus obtaining 
a k-scoped accepting run of M starting from q0. Since (h, q, ̄q1, . . . , ̄qn) is initial for R we get q0 ∈ Q I and we are done. �
6.3.1. Computational complexity of configuration reachability of SMpds

Fix an SMpds M = (k, Q , Q I , ̃�n, δ) and a set of configurations T = P ×L(B1) × . . . ×L(Bn), where P ⊆ Q .
By Theorem 27, the reachability problem for SMpds can be reduced to checking the emptiness of 

⋃
q∈P (L(R, q) ∩ L)

where L =L(B1) � . . .�L(Bn). Denoting with Ai,M × Bi the standard cross product construction synchronized on the input 
symbols (ε transitions can be taken asynchronously), the construction of R can be modified such that in the simulation 
mode it tracks the behaviors of Ai,M × Bi instead of just the thread automaton Ai,M . Denote with RT the resulting finite 
state automaton. We observe that in RT , the simulation of each Bi starts from the initial states, and then the Bi -component 
gets updated only in the simulation mode in pair with the couped layered stack automaton. We omit further details on the 
construction of RT .

We recall that the number of states of each Ah,M is at most (k + 1)|Q |3α where α = O (2(k|Q |)2
) is the number of 

different �-layered stack automata with � ≤ k. Thus the number of states of RT is at most (n + 1)|Q |(k + 1)n|Q |3nαnβn

where β is the maximum over the number of states of B1, . . . , Bn . Thus, the number of states of RT is exponential in n, 
|Q | and k. Since we can explore on-the-fly the state space of RT , we can check the emptiness of RT in polynomial space, 
and in time exponential in n, |Q |2 and k2. Since each instance of the location reachability is also an instance of the general 
reachability problem, by Theorems 15 and 27 we get:

Theorem 28. The reachability problem for SMpds is Pspace-complete, and hardness can be shown both with respect to the number of 
stacks and the bound k.

7. Conclusion

We have introduced a decidable restriction of multistack pushdown systems that allows for unboundedly many context 
switches. Compared to the bounded context-switching analysis, by bounding the scope of the matching relations of push 
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and pop transitions we can explore a (significantly) larger number of computations of a given Mpds and possibly with a 
smaller value of the bounding parameter. For example, a run that alternates pushes of two stacks is 1-scoped while it can 
have any number of contexts. In general, for systems where the procedure calls do not need to hang for many contexts 
before returning, the bounded scope analysis covers the behavior explored with the context bounded analysis with smaller 
values of the bound k, which is a critical parameter for the complexity of the decision algorithms (time is exponential in k
in both settings).

The main limitation introduced by restricting to bounded scope computations is to bound the amount of information that 
can flow out of a stack configuration into the other stacks. This makes this notion in some sense orthogonal to bounding 
the number of phases and allowing pop transitions only from the least indexed non-empty stack. In fact, in bounded phase 
computations we can transfer an unbounded amount of information from a stack to the others but only for a bounded 
number of times. In the ordered computations instead, unbounded information can only be transferred from the least 
indexed non-empty stack to stacks of higher index.

We have shown detailed comparisons with the other restrictions introduced in the literature for the analysis of Mpds, and 
studied the computational complexity of the location and configuration reachability problems. In particular, the problems 
turn out to be both Pspace-complete and our decision procedures are exponential in the number of control states, the 
number of stacks and the bound on the scope.

We remark that the original notion of bounded scope runs introduced in [9] was based on the notion of round. We 
recall that for an n-stack Mpds M , a round of M is the concatenation of n contexts where stack h is the active stack of 
the h-th concatenated context. Thus, a run is k-round scoped2 if the pop transitions are allowed only when the symbol at 
the top of the stack was pushed within the last k rounds. It is simple to see that the k-scoped restriction used here is a 
relaxation of the k-round scoped one. In fact, in k-round scoped runs the number of contexts occurring between a push and 
its matching pop is always bounded while in k-scoped runs it can be unbounded. Moreover, each k-round scoped run is 
clearly also a k-scoped run. As an example, consider the Mpds M2 of Example 2. As observed in Example 2 all the runs of 
M2 are all 2-scoped. Instead, for each bound k > 0, there are runs of M2 that are not k-round scoped. In fact, configuration 
〈 〈q4, ε, ε, ck〉 〉 can be reached only by allowing to pop a in round k + 1.

As future research, we think that it would be interesting to experiment the effectiveness of the verification methodology 
based on our approach, by implementing our algorithms in a verification tool and compare them with competing tools. If 
on one side the considered reachability problem has a theoretically higher complexity compared to the case of bounded 
context-switching, on the other side smaller values of the bound on the number of context switches are likely to suffice for 
several systems.
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