
Information and Computation 275 (2020) 104588
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Reachability of scope-bounded multistack pushdown systems

Salvatore La Torre a,∗, Margherita Napoli a, Gennaro Parlato b

a Università degli Studi di Salerno, Italy
b Università degli Studi del Molise, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 December 2018
Received in revised form 7 January 2020
Accepted 6 May 2020
Available online 13 May 2020

Keywords:
Multistack pushdown automata
Reachability
Verification

A multi-stack pushdown system is a natural model of concurrent programs. The basic
verification problems are undecidable and a common trend is to consider under-
approximations of the system behaviors to gain decidability. In this paper, we restrict
the semantics such that a symbol that is pushed onto a stack s can be popped only within
a given number of contexts involving s, i.e., we bound the scope (in terms of number
of contexts) of matching push and pop transitions. This restriction permits runs with
unboundedly many contexts even between matching push and pop transitions (for systems
with at least three stacks). We call the resulting model a multi-stack pushdown system with
scope-bounded matching relations (SMpds). We show that the configuration reachability and
the location reachability problems for SMpds are both Pspace-complete, and that the set of
the reachable configurations can be captured by a finite automaton.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multi-stack pushdown systems are a natural and well-established model of programs with both concurrency and re-
cursive procedure calls, which is suitable to capture accurately the flow of control. A multi-stack pushdown system is
essentially a finite control equipped with one or more pushdown stores. Each store encodes a thread of the program and
the communication between the different threads is modelled with the shared states of the finite control.

The class of multi-stack pushdown systems is very expressive. It is well known that two stacks can simulate an un-
bounded read/write tape, and therefore, a push-down system with two stacks suffices to mimic the behavior of an arbitrary
Turing machine. In the standard encoding, it is crucial for the automaton to move an arbitrary number of symbols from
one stack to another and repeat this for arbitrarily many times. To achieve decidability it is thus necessary to break this
capability by placing some limitations on the model.

The analysis of multi-stack pushdown systems within a bounded number of execution contexts (in each context only
one stack is used) has been proposed as an effective method for finding bugs in concurrent programs [1]. This approach is
justified in practice by the general idea that most of the bugs of a concurrent program are likely to manifest themselves
already within few execution contexts (which has also been argued empirically in [2]). Though bounding the number of
context-switching in the explored runs does not bound the depth of the search of the state space (the length of each context
is unbounded), it has the immediate effect of bounding the interaction among different threads and thus the exchanged
information. In fact, the reachability problem with this limitation becomes decidable and is NP-complete [3,1].

* Corresponding author at: Università degli Studi di Salerno, Dipartimento di Informatica, Via Giovanni Paolo II, 132 - 84084 Fisciano (SA), Italy.
E-mail addresses: slatorre@unisa.it (S. La Torre), gennaro.parlato@unimol.it (G. Parlato).
https://doi.org/10.1016/j.ic.2020.104588
0890-5401/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ic.2020.104588
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2020.104588&domain=pdf
mailto:slatorre@unisa.it
mailto:gennaro.parlato@unimol.it
https://doi.org/10.1016/j.ic.2020.104588

2 S. La Torre et al. / Information and Computation 275 (2020) 104588
In this paper, we propose a decidable notion of multistack pushdown system that does not bound the number of in-
teractions among the different stacks, and thus looks more suitable for a faithful modeling of programs with an intensive
interaction between threads. We impose a restriction which is technically an extension of bounding the number of context-
switching but is indeed conceptually very different. We allow an execution to go through an unbounded number of contexts,
however recursive calls that are returned can only span over a bounded number of contexts of the same stack, i.e., when
executing a returned call a thread can be preempted only for a bounded number of times. In other words, we bound the
scope of the matching push and pop operations of a stack s in terms of the number of context switches from s. Note that
under such a restriction, whenever a symbol is pushed onto a stack s, it is popped either within a bounded number of con-
texts of s or never. This has the effect that in an execution of the system, from each stack configuration which is reached, at
most a finite amount of information can be moved into the other stacks, thus breaking the ability of the multistack push-
down system of simulating a Turing machine. We call the resulting model a multistack pushdown system with scope-bounded
matching relations (SMpds).

Our main technical contribution is to show the decidability of the reachability problem for SMpds. We consider both
the location and configuration reachability problems. The configuration reachability problem asks whether a configuration (a
control state along with the stack contents) within a set of target configurations of the SMpds is reachable. We consider
sets of target configurations given as the cross product of a set of control states and a regular language of stack contents for
each thread. In the location reachability problem the request is only with respect to a set of target control states (location)
regardless of the actual stack contents of the reached configurations.

For the location reachability, we give a fixed-point decision algorithm based on the notion of thread interface introduced
in [4]. A h-thread interface summarizes the starting and ending control states of h consecutive contexts of a thread within a
run of a Mpds, assuming that the thread stack is empty when the first of such contexts starts. Our algorithm first guesses
for each thread a thread interface, then it advances in the simulation of a run of the Mpds by stitching the contexts of these
interfaces until one of them will be entirely consumed (this corresponds to advancing in the run by macro-steps covering
each an entire context). At this point, a new thread interface is taken for the corresponding thread and the simulation is
resumed. The algorithm stores tuples formed of a control state and a thread interface suffix for each thread (the remaining
parts of the guessed thread interfaces still to be used). It halts as soon as a target control state is reached or no new such
tuples can be added (and thus no new simulation is possible). For termination, we show that any k-scoped run (i.e., a run
where the scope of the matching relations is bounded by k) can be captured by using only h-thread interfaces with h ≤ k,
and thus for a given k, a finite number of thread interfaces will suffice to explore all such runs. Therefore, by restricting
the guesses to only h-thread interfaces with h ≤ k, the algorithm is guaranteed to terminate. As for the complexity, our
algorithm can be implemented to take time exponential in k and n and polynomial in d, where n is the number of threads
and d is the number of control states of the SMpds.

In thread interfaces, the content of thread stack is entirely abstracted away. Thus for the general reachability problem
we introduce a new abstraction called layered stack automaton. For a thread T , an �-layered stack automaton captures the
top portion of its stack which corresponds to the symbols that were pushed within the last t contexts of T . The automaton
is structured into layers that are added incrementally by applying for each layer a saturation procedure similar to the one
given in [5] for standard (one-stack) pushdown systems. Since in k-scoped runs only the symbols that were pushed within
the last k contexts of a thread can be popped, we can restrict to �-layered stack automata with � ≤ k to keep track of the
meaningful top portion of the stack during a computation. We then relate the layered automata of a thread via a successor
relation: a layered automaton A is a successor of a layered automaton B if A is obtained by adding a new layer to B
via the saturation procedure. We thus reconstruct the stack content through the portions captured by bounded layered
automata connected via the successor relation. We call the resulting finite automaton a thread automaton. To capture the
set of reachable configurations, we thus construct another finite automaton R that uses as components a thread automaton
for each thread and synchronizes all of them by picking the next context (among the next possible ones for each thread
automaton) such that it can be stitched to the last processed one. Assuming that the stack contents of the target set are
expressed by finite automata, we can modify R to simulate such automata in parallel with the thread automata by a
standard cross product, that reduces the configuration reachability to standard reachability for finite automata. As for the
complexity, the outlined algorithm can be implemented to take time exponential in k2, d2 and n and polynomial in the size
of the target set representation, where n is the number of threads and d is the number of control states of the SMpds.

We observe that both our algorithms can be implemented to take polynomial space. For the first one, at each iteration
instead of maintaining a set of tuples we can just maintain one tuple (the last computed one) and nondeterministically
select the next rule to apply. The algorithm will halt as soon as we compute a tuple with control state in the target set
or we have reached a number of iterations that equals the number of possible different tuples. This can be determined by
counting the number of different thread interfaces with bound k. For the second one, we recall that it is well known that
reachability in finite automata can be decided in logarithmic space, and since we can explore the resulting automaton on-
the-fly, we clearly get a Pspace upper bound also for the configuration reachability for SMpds. We show that both location
reachability and configuration reachability for SMpds are Pspace-complete by providing a matching lower bound. Indeed,
we show the upper bound is tight with respect to both the number of stacks and the bound k. For this, we sketch two
reductions from the membership problem of Turing machines working in polynomial space to the location reachability
problem for respectively n-stack 2-SMpds and 2-stack 2k-SMpds.

S. La Torre et al. / Information and Computation 275 (2020) 104588 3
As a further result, we compare the state coverage by exploring scoped runs as opposed to other restrictions for Mpds

that have been introduced in the literature. As observed above, the bounded scope restriction is an extension of bounded
context-switching. Interestingly, we show that this restriction allows us to achieve a state space exploration of Mpds that is
orthogonal with respect to bounding the number of phases [6], restricting to ordered runs [7], and restricting to runs that
can be encoded in bounded path-trees [8].

The rest of the paper is organized as follows. In Section 2, we discuss the related work. In Section 3, we introduce the
notion of Mpds with related notation and definitions. In Section 4, we define the reachability problem and discuss the state
coverage ensured by bounded scope runs as opposed to existing limitations. Our solutions to the location reachability and
configuration reachability problems are given respectively in Section 5 and Section 6. We also address the computational
complexity in the respective sections. We give our conclusions and future directions in Section 7.

2. Related work

In this paper we re-elaborate the results of [9] as follows. First, here we use the notion of bounded scope runs that was
introduced later in [10]. This notion captures more behaviors with respect to the original one given in [9] and in particular
can account for unboundedly many contexts of the other threads between a push and its matching pop transition. We thus
re-elaborate accordingly the decision algorithm for the configuration reachability problem from [9] and show its correctness
in detail. For the location reachability, we give a simpler algorithm that adapts the solution given in [11], which was also
given for the original notion of bounded scope runs and by assuming a round-robin scheduling of the threads. Finally, the
discussion on the state space coverage of bounded scope runs is given in more detail and extended to account for the results
appeared after the publication of [9].

Our fixed-point algorithm for the location reachability of Mpds uses the concept of thread interface introduced in [4].
Thread interfaces are a simpler artifact than finite automata and can be easily encoded for efficient symbolic search. In
fact, our fixed-point algorithm has a direct implementation in the tool Getafix, a framework that supports the writing in a
fixed-point calculus of model-checkers for sequential and concurrent Boolean programs (see [12]).

Our decision algorithm for configuration reachability of Mpds relies on the saturation procedure used for the analysis
of pushdown systems [5]. This procedure was already reused in [1] for solving the reachability of Mpds within a bounded
number of context switches. As in [1], we compute the set of reachable configurations as tuples of automata accepting
configurations of each stack, and construct the automata by iterating the saturation algorithm from [5] into layers, each for
execution context. However, in [1] the construction has a natural limit in the allowed number of contexts which is bounded,
while in our setting, we appeal to the bound on the scope of the matching relations and use the automata to represent not
all the stack contents but only the portions corresponding to the last k execution contexts of the corresponding thread.

Since their introduction [9], the theory of bounded scope Mpds has been enriched with more results. In [13], SMpds

define a robust class of visibly languages that enjoys the main properties of regular languages such as: decidability of
emptiness, membership, inclusion, equivalence and universality; closure under union, intersection, complement and de-
terminization; MSO characterization and Parikh theorem. SMpds also admit sequentialization, i.e., simulation by standard
pushdown systems, and the corresponding class of behavior graphs (nested words with multiple stack relations expressing
system computations) has bounded treewidth [11]. Bounded treewidth for this class is also shown in [14] via the notion of
splitwidth. Finally, SMpds have a natural and meaningful semantics for infinite computations which allows to observe also
infinitely many interactions between the different threads. The model-checking problem of SMpds against linear temporal
logic is shown to be decidable for LTL in [15] and for a concurrent version of CARET [16] in [10].

The bounded scope restriction is introduced as a generalization of the bounded context-switching [1]. This notion has
been successfully used in recent research: model-checking tools for concurrent programs (see [12,17–22]); translations
of concurrent programs to sequential programs reducing bounded context-switching reachability to sequential reachabil-
ity [23,17,21,22]; model-checking tools for Boolean abstractions of parameterized programs (concurrent programs with
unboundedly many threads each running one of finitely many codes) [4]; sequentialization algorithms for parameterized
programs [24]; model-checking of programs with unbounded dynamic creation of threads [25] and more liberal scheduling
of threads [26,27]; analysis of systems with heaps [28], systems communicating using queues [29], and weighted pushdown
systems [3], complexity results [30].

More decidable restrictions that extend bounded context switching for Mpds have been considered in literature. In
[6], the notion of context is relaxed and the behaviors of multistack pushdown systems are considered within a bounded
number of phases, where in each phase only one stack is allowed to execute pop transitions but all the stacks can do
push transitions. The location reachability problem in this model turns out to be 2Etime-complete [6,31]. In [32] the set of
predecessor configurations up to k phases is shown to be regular. Model-checking for bounded phase Mpds is studied in
[33–35]. We observe that in each phase an unbounded amount of information can pass from one stack to any other, but
still this can be done only a bounded number of times. Thus, in some sense this extension is orthogonal to that proposed in
this paper and this is indeed confirmed by our results which show that the set of configurations that are reachable within
a bounded number of phases can be incomparable with the one reachable by bounded scope runs. Moreover, it is simple
to verify that the extension of SMpds where contexts are replaced with phases in the rounds is as powerful as Turing
machines.

4 S. La Torre et al. / Information and Computation 275 (2020) 104588
Another decidable restriction of Mpds is ordered Mpds [7], where symbols can be popped from stack i only if all the
stacks from 1 to i − 1 are empty. Visibly 2-stack ordered Mpds are studied in [36,37]. The closure under complement for
ordered MPDSs, and thus the decidability of inclusion, equivalence and universality, is given in [8].

In Mpds with budgets each thread can perform at most k consecutive context switches unless its stack depth goes below
the given bound d [38]. This restriction in some sense enforces the bounded scope restriction when the stacks pass the
depth threshold, and does not seem to add to it more than a finite state store of exponential size (which can be explored
taking polynomial space).

A general decidability result shows that most of the syntactic restrictions placed on Mpds lead to classes of graphs
representing the runs of the Mpds that are MSO-definable and of bounded treewidth [39]. Bounded scope and bounded
phase restrictions have been studied for concurrent collapsible Mpds [40], and the bounded phase restriction also for parity
games on Mpds[41]. The notion of bounded context-switching has been recently investigated for valence systems [42].

3. Multi-stack pushdown systems with scope-bounded runs

In this section we introduce the notations and definitions we will use in the rest of the paper. We assume that the
reader is familiar with the basic concepts on finite automata, trees and graphs.

Given two positive integers i and j, i ≤ j, we denote with [i, j] the set of integers k with i ≤ k ≤ j, and with [j] the set
[1, j].
Multistack pushdown systems. A multi-stack pushdown system consists of a finite control along with one or more push-
down stores. There are three kinds of transitions that can be executed: the system can push a symbol on any of its stacks,
or pop a symbol from any of them, or just change its control state by maintaining unchanged the stack contents. For the
ease of presentation and without loss of generality we assume that the symbols used in each stack are disjoint from each
other. Therefore, a multi-stack pushdown system is coupled with an n-stack alphabet �̃n defined as the union of n pairwise
disjoint finite alphabets �1, . . . , �n .

Formally:

Definition 1. (Multi-stack pushdown system) A multi-stack pushdown system (Mpds) with n stacks is a tuple M =
(Q , Q I , ̃�n, δ) where Q is a finite set of states, Q I ⊆ Q is the set of initial states, �̃n is an n-stack alphabet, and
δ ⊆ (Q × Q) ∪ (Q × Q × �̃n) ∪ (Q × �̃n × Q) is the transition relation. A pushdown system (Pds) is a Mpds with
just one stack. For each i ∈ [n], with T i

M we denote the i-th thread of M , i.e., the Pds (Q , Q I , �i, δi) where δi =
δ ∩ ((Q × Q) ∪ (Q × Q × �i) ∪ (Q × �i × Q)). �

We fix an n-stack alphabet �̃n = ⋃n
i=1 �i for the rest of the paper. A transition (q, q′) is an internal transition where the

control changes from q to q′ and the stack contents stay unchanged. A transition (q, q′, γ) for γ ∈ �i is a push-transition
where the symbol γ is pushed onto stack i and the control changes from q to q′ . Similarly, (q, γ , q′) for γ ∈ �i is a pop-
transition where γ is read from the top of stack i and popped, and the control changes from q to q′ . A stack content w
is a possibly empty finite sequence over �i , for some i ∈ [n]. A configuration of a Mpds M is a tuple C = 〈 〈q, w1, . . . , wn〉 〉,
where q ∈ Q and each wi ∈ �∗

i is a stack content. Moreover, C is initial if q ∈ Q I and wi = ε for every i ∈ [n]. A transition
〈 〈q, w1, . . . , wn〉 〉 →M 〈 〈q′, w ′

1, . . . , w
′
n〉 〉 is such that one of the following cases holds (M is omitted whenever it is clear from

the context):

[Internal] there is a transition (q, q′) ∈ δ, and w ′
h = wh for every h ∈ [n];

[Push] there is a transition (q, q′, γ) ∈ δ such that γ ∈ �i , w ′
i = γ · wi , and w ′

h = wh for every h ∈ ([n] \ {i});
[Pop] there is a transition (q, γ , q′) ∈ δ such that wi = γ · w ′

i and w ′
h = wh for every h ∈ ([n] \ {i}).

A run of M from C0 to Cm , with m ≥ 0, denoted C0 �M Cm , is a possibly empty sequence of transitions Ci−1 →M Ci for
i ∈ [m] where each Ci is a configuration.

For a Mpds M and h ∈ [n], a context of thread T h
M , h-context for short, is a portion of a run of M where the pop and

push transitions are all over stack h. More formally, a h-context from C to C ′ , denoted C �h
M C ′ , is a run C �M C ′ whose

transitions are all from δh , i.e., involve only thread T h
M .

For the ease of presentation, in the following, we will abuse the notation and identify runs of the h-th thread and h-
contexts. In particular, we will also denote a context 〈 〈q, w1, . . . , wn〉 〉 �h

M 〈 〈q′, w ′
1, . . . , w ′

n〉 〉 simply as 〈 〈q, wh〉 〉 �h
M 〈 〈q′, w ′

h〉 〉.
Similarly, a transition 〈 〈q, w1, . . . , wn〉 〉 →M 〈 〈q′, w ′

1, . . . , w ′
n〉 〉 within an h-context will be also denoted as 〈 〈q, wh〉 〉 →h

M〈 〈q′, w ′
h〉 〉.

For each thread T h
M , we are also interested in sequences of h-contexts where each context builds on the stack content left

by the previous one in the sequence. In other words, such a sequence would form a run of T h
M except that each context does

not need to start from the control state that ended the previous one. Formally, a multiple context run of T h
M is a sequence of

h-contexts ρ1, . . . , ρm such that w1 = ε and w ′ = wi+1 for i ∈ [m − 1], where ρi = 〈 〈q, wi〉 〉 �h 〈 〈q′, w ′〉 〉 for i ∈ [m].
i M i

S. La Torre et al. / Information and Computation 275 (2020) 104588 5
q0 q1

q2

q3

q4 q5

push(a)

push(b) push(c)

pop(b)

pop(a)

Fig. 1. Graphical representation of the Mpds M1 from Example 1.

Example 1. Fig. 1 gives a 2-stack Mpds M1 with stack alphabets �1 = {a, b} and �2 = {c}. The starting state of M1 is q0 and
its transition relation is: {(q0, q1), (q1, q2, a), (q2, q3, b), (q3, q2, c), (q2, q4), (q4, b, q4), (q4, a, q5)}.

A typical execution of the system M1 from the initial state q0 starts with an internal move to q1 and then pushing a onto
stack 1. Thus, M1 iteratively pushes b onto stack 1 and c onto stack 2, reaching a configuration of the form 〈 〈q2,bra, cr〉 〉.
From this configuration, M1 can move to q4 and pop b from stack 1. When all b’s are popped out, M1 can also pop a from
stack 1 and finally reach the control state q5 with stack 1 empty, in a configuration of the form 〈 〈q5, ε, cr〉 〉. �
Scope-bounded runs. In the standard semantics of Mpds a pop transition (q, γ , q′) can be always executed from q when γ
is at the top of the stack. We consider here a semantics that restricts this. In particular, given k > 0, we restrict the runs
of a Mpds such that a pop transition from stack h is allowed to execute only when the symbol at the top of the stack was
pushed within the last k contexts of h. Thus, we place a constraint on the matching relations (i.e., the relations defined by
pairing the pushes and the corresponding pops) that can be defined in the runs.

We introduce first some notation. We fix a run ρ = C0 →M C1 · · · →M Cm and denote ρ[i, j] = Ci →M · · · C j and |ρ| = m.
A decomposition of ρ is ρ1, . . . , ρ� where ρi = ρ[ji−1, ji] for i ∈ [�] where 0 = j0 < . . . < j� = m. Note that the sequence

of all h-contexts from a decomposition of ρ always forms a multiple context run of T h
M , however not all the multiple context

runs of T h
M can be completed to form a run of M .

An h-context ρ[i, j] is maximal if it is either the entire run, i.e., i = 0 and j = m, or it: (1) contains at least a push or a
pop transition and (2) cannot be extended by including other push or pop transitions of stack h, i.e., for each i′ ≤ i and j′ ≥ j
such that ρ[i′, j′] is still an h-context, both ρ[i′, i] and ρ[j, j′] do not contain push or pop transitions of stack h. We observe
that according to this definition a maximal context can be extended with an internal transition and the resulting context be
still maximal. As an example, consider the run described in Example 1 with r = 2. The portion 〈 〈q1, ε, ε〉 〉 →M 〈 〈q3,ba, ε〉 〉
and its extension with the first transition, i.e., 〈 〈q0, ε, ε〉 〉 �M 〈 〈q3,ba, ε〉 〉, are both maximal 1-contexts. Any other extension
would include at least a push onto stack 2 and thus it would not be a 1-context. Also, note that 〈 〈q0, ε, ε〉 〉 →M 〈 〈q1, ε, ε〉 〉
is not maximal for any stack and can be part only of a maximal 1-context. The internal transition (q2, q4) instead can be
part of the maximal 1-context 〈 〈q2,b2a, c2〉 〉 �M 〈 〈q5, ε, c2〉 〉 or of the maximal 2-context 〈 〈q3,b2a, c〉 〉 �M 〈 〈q4,b2a, c2〉 〉. In
general, internal moves can be added to adjacent maximal contexts still resulting into maximal contexts.

With contextsh(i, j) we denote the number of h-contexts contained in a decomposition of ρ[i, j] into maximal contexts.
Note that contextsh(i, j) is well-defined since the number of maximal h-contexts is independent of the actual decomposition
that is chosen.

For a stack h and indices i, j ∈ [0, m −1], (i, j) is h-matching in ρ if: i < j, Ci → Ci+1 is a transition that pushes a symbol
onto stack h and this symbol stays onto stack h until transition C j → C j+1 pops it. When this is the case, we say that a
push Ci → Ci+1 and a pop C j → C j+1 match each other.

A run ρ is k-scoped if for each stack h and indices i, j ∈ [0, m] such that (i, j − 1) is h-matched, we have contextsh(i, j) ≤
k. Analogously a multiple context run of T h

M , say ρ1, . . . , ρm , is k-scoped if for each i, j ∈ [m] such that there is a push in
ρi that is matched in ρ j , we have j − i < k. Clearly, the multiple context runs obtained from a decomposition into maximal
contexts of a k-scoped run are k-scoped too.

Example 2. Fig. 2 gives a 3-stack Mpds M2 with stack alphabets �1 = {a}, �2 = {b} and �3 = {c}. The starting state of M2 is
q0 and its transition relation is: {(q0, q1, a), (q1, q2, b), (q2, q3, c), (q3, b, q1), (q1, a, q4)}.

A typical execution of M2 starts from the initial state q0 and pushes a on stack 1. Then it iterates the following steps:
push b on stack 2, push c on stack 3 and pop b. After r ∈N such iterations, M2 pops a from stack 1 and reaches configu-
ration 〈 〈q4, ε, ε, cr〉 〉.

Fig. 3 gives a graphical representation of such an execution for r = 2. In the figure, we denote by dashed arrows the
matching push and pop transitions, and use different colors to distinguish among the different threads. Full arrows capture
the linear ordering among the transition within the run. A context is thus denoted with a chain of nodes of the same color
linked though full arrows. Except for the middle context that is formed of a pop transition followed by a push transition
of T 2

M2
, any other context of the run is formed of just one transition. This run is clearly 2-scoped. In fact, as shown by the

dashed arrows, each matched push transition is paired with a pop transition within the next context of the same thread.
We observe that indeed all the runs of M2 are 2-scoped. In fact, any possible run of M2 is a prefix of the above

described execution for some r ≥ 0. Moreover, symbols a and b are popped out at most within the next context of the
respective stacks, and symbols c are never popped. �

6 S. La Torre et al. / Information and Computation 275 (2020) 104588
q0

q1

q2 q3

q4

push(a)

push(b)

push(c)

pop(b)

pop(a)

Fig. 2. Graphical representation of the Mpds M2 from Example 2.

push(a) push(b) push(c) pop(b) push(b) push(c) pop(b) pop(a)

Fig. 3. Graphical illustration of the push/pop matching and context splitting of a run of the Mpds M2 from Example 2. The matching push and pop
transitions are linked with dashed arrows and the colors blue, red and green are used to denote respectively the contexts of T 1

M2
, T 2

M2
and T 3

M2
.

Definition 2. (Scope-bounded Mpds) A k-scoped multi-stack pushdown system (k-SMpds) with n stacks is M = (k, Q , Q I , ̃�n, δ)
where k ∈N and (Q , Q I , ̃�n, δ) is a Mpds. A run of M is any k-scoped run of (Q , Q I , ̃�n, δ). �

For a Mpds M = (Q , Q I , ̃�n, δ), we often denote with (k, M) the corresponding k-SMpds (k, Q , Q I , ̃�n, δ).

4. Reachability in MPDS

In this section, we will define the reachability problem for Mpds and recall the main restrictions that have been studied
in the literature. Then, we will discuss the state space coverage for scope-bounded runs and compare it with the other
known restrictions.

Reachability. A target set of configurations for M is S × R1 × . . . × Rn such that S ⊆ Q and for i ∈ [n], Ri ⊆ �∗
i is a regular

language. Given a Mpds M = (Q , Q I , ̃�n, δ) and a target set of configurations F , the reachability problem asks to determine
whether there is a run of M from an initial configuration C0 to a configuration C ∈ F . We consider also a restricted version of
this problem where we are only interested in the control state and not in the stack contents of the reached configurations.
Formally, the location reachability problem for Mpds is defined as the reachability problem with respect to a target set of
the form S × �∗

1 × . . . × �∗
n . In the following, we will also refer to the general reachability problem, where the reached

configurations matter, as the configuration reachability problem.
It is well known (see for example [43]) that the reachability problem for multi-stack pushdown systems is undecidable

already when only two stacks are used (two stacks suffice to encode the behavior of a Turing machine) and is decidable in
polynomial time (namely, cubic time) when only one stack is used (pushdown systems).

Theorem 1. The (location) reachability problem is undecidable for Mpds and is decidable in cubic time for Pds.

Known decidable restrictions. Decidability can be gained by imposing some restrictions on the runs of a Mpds. Below, we
recall the main restrictions that have been studied in the literature (the bounding parameters are assumed to be encoded
in unary).

Bounded-context switching. A k-context run of M is a run formed as the concatenation of k contexts [1] (a similar restriction
can be obtained by restricting to k rounds). The reachability problem within k contexts is the (location) reachability restricted
to the sole k-contexts runs.

Theorem 2. [1,3] The (location) reachability problem within k contexts for Mpds is NP-complete.

Bounded-phase. A phase is a run of M where the pop transitions are all from the same stack (pushes onto any of the stacks
are allowed within the same phase) [6]. Exploring all the runs of a system obtained as the concatenation of k phases ensures
a better coverage of the state space compared to k-contexts reachability. In fact, a k-phase run can be formed of an arbitrary
number of contexts (for example, a run that iterates k times a push onto stack 1 and a push onto stack 2 is a 2k-context
one, while it uses only one phase). On the other side, the resulting reachability problem has higher complexity.

S. La Torre et al. / Information and Computation 275 (2020) 104588 7
q0

M3:

q1

q2

push(a)

push(b)pop(a)

pop(a)

q0

M4:

q1 q2

q3q4q5

push(a) push(a)

pop(a)

push(b)push(b)

pop(b)

Fig. 4. Graphical representation of the Mpds M3 and M4.

Theorem 3. [6,31] The location reachability problem within k phases for Mpds is 2Etime-complete.1

Ordered runs. A run of a Mpds M is ordered if the stacks of M are numbered 1, 2, . . . , n and all the pop transitions are
executed only on the lowest numbered non-empty stack [7]. Recently a further restriction has been introduced, called
adjacent ordered, with additional requirement that, during a phase associated to stack i push transitions are allowed only on
stacks i − 1 and i + 1 [44]. It is known that the runs up to k phases of a Mpds can be simulated by ordered runs using 2k
stacks [45].

Theorem 4. [44,45] The location reachability problem for Mpds restricted to ordered (resp. adjacent ordered) runs is 2Etime-complete
(resp. Exptime-complete).

Bounded path-tree. A stack tree encoding a run ρ of a Mpds M is a binary tree obtained as follows. The first transition of
ρ labels the root, and then each following transition labels the left child of the node labeled by the previous transition
unless it is a matched pop transition. If this is the case instead, it labels the right child of the matching push transition.
ρ is k-path-tree if it can be encoded into a stack tree and there is a walk in the tree that, starting from the root, visits all
the nodes such that: the nodes are discovered according to the linear order of the corresponding transitions in ρ and each
node is not visited more than k times [8].

It is known that the runs up to d phases of a Mpds are k-path-tree with k = 2d + 2d−1 + 1 and ordered runs of a Mpds

with n stacks are k-path-tree with k = (n + 1) · 2n−1 + 1 (see [8]).

Theorem 5. [8] The location reachability problem for Mpds restricted to k-path-tree runs is Exptime-complete.

Comparing the state space coverage. In the following, we briefly discuss the scope-bounded restriction in terms of coverage
of the reachable state space of a multi-stack pushdown system.

We start observing that though all the runs of the Mpds M2 given in Example 2 are 2-scoped, in general given a k > 0,
k-scoped runs may not suffice to cover the entire state space of a Mpds. In fact, consider the Mpds M1 from Example 1:
for each k ≥ 1, the configuration 〈 〈q5, ε, ck〉 〉 is reachable in the SMpds (k + 1, M1) and is not reachable in any of the SMpds

(h, M1) for h ≤ k. Thus we can state the following result.

Lemma 6. For any Mpds M and k > 0, if a configuration C ′ is reachable from C in the SMpds (k, M), then C ′ is also reachable from C
in M. Vice-versa, there is a Mpds M ′ such that for each k > 0 there is a reachable configuration C that is not reachable in the SMpds

(k, M ′).

Now, fix �1 = {a}, �2 = {b}. Let M3 be the 2-stack Mpds from Fig. 4. Since the only pop transitions are from the same
stack, any run of M3 is 1-phase. It is simple to see that a configuration Ck = 〈 〈q2, ε,bk〉 〉 for k ∈ N , is not reachable in the
SMpds (h, M3) for any h ≤ k.

Moreover, let M4 be the 2-stack Mpds from Fig. 4. Since along any run, the stack symbols are popped within the same
contexts where they are pushed, any run of M4 is 1-scoped. However, a configuration Ck = 〈 〈q0,ak,bk〉 〉 for k ∈ N is not
reachable with a run with less than 2k phases.

Thus, we get that the notions of scope-bounded reachability and phase-bounded reachability are not comparable. There-
fore, they give two orthogonal ways of exploring the state space of a Mpds.

Lemma 7. There is a Mpds M such that any reachable configuration can be reached within one phase, and for each k > 0 there is a
configuration C that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (1, M), and for any k > 0 there is a configuration
C that is not reachable within k phases.

1
2Etime is the class of languages accepted by Turing machines in 22O (n)

time.

8 S. La Torre et al. / Information and Computation 275 (2020) 104588
M5:

q0 q1 q2 q3 q4

q5q6q7

push(a) push(b) pop(a) push(a)

push(a)

pop(b)push(b)

push(b)

Fig. 5. Graphical representation of the Mpds M5.

push(a)

push(b)

T (a)

T (b)

where T (x) is: pop(x)
push(x)

push(x)
pop(x)

(k − 1 times)push(x)
pop(x)

push(x)
push(x)

Fig. 6. Stack tree of the M5 run reaching 〈〈q2,ak,bk〉〉.

The same result also holds with respect to (adjacent) ordered runs. In fact, consider again the 2-stack Mpds M3 from
Fig. 4. Since all the pop transitions involve stack 1, all the runs are clearly ordered. Moreover, since there are only two
stacks, they are also adjacent ordered. As already observed above, for each k > 0, configuration 〈 〈q2, ε,bk〉 〉 is not reachable
in the SMpds (k, M3). On the other hand, in Example 2, any configuration 〈 〈q1,a, ε, ck〉 〉, with k > 0, is not reachable trough
an ordered run: a b needs to be popped out from stack 2 when stack 1 is not empty. Thus we have the following result.

Lemma 8. There is a Mpds M such that any reachable configuration can be visited through (adjacent) ordered runs, and for each k > 0
there is a configuration that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (2, M), and there is a configuration that is not
reachable through (adjacent) ordered runs.

Finally, we observe that any run ρ of the 2-stack Mpds M3 is also 3-path-tree. In fact, given ρ , the corresponding stack
tree is formed of a leftmost path where pushes of a alternate with pushes of b, and a right child for each matched push.
To visit the nodes of the stack tree to recover the order in ρ it suffices to visit it in a depth-first-search fashion, thus each
node is visited at most 3 times. We also observe that any 1-scoped run of a Mpds generates a stack tree such that the
linear ordering can be recovered by visiting it in a depth-first-search fashion (1-scoped runs can be easily simulated by a
standard pushdown automaton since a symbol is popped from the stack only in the context in which it is pushed), and thus
is 3-path-tree.

Furthermore, consider the 2-stack Mpds M5 from Fig. 5. Since along any run, each popped stack symbol was pushed
within the previous context, we get that any run of M5 is 2-scoped. However, consider the run that leads to a configuration
Ck = 〈 〈q2,ak,bk〉 〉 for k ∈ N . This run visits k − 1 times the entire loop of M5 and corresponds to the sequence of stack
operations ab(āa2b̄b2)k−1, where we have denoted push(x) with x and pop(x) with x̄ for x ∈ {a, b}. The corresponding stack
tree is given in Fig. 6. In order to visit its nodes according to the order given by the run, we start from the root and then
visit its left child. Then, we go back to the right child of the root and proceed on the leftmost path of this subtree (i.e.,
T (a)). This way we discover the first āa2 sequence. Then, we go back to the left child of the root and visit its right child
(i.e., the root of T (b)) thus discovering the first pop(b) transition. We then proceed on the leftmost path and discover two
push(b) transitions, and so on. Observe that to match the sequence corresponding to an entire loop starting from q2 in
M5, i.e., āa2b̄b2, we visit twice the root of the stack tree. Thus, to recover the entire sequence we visit the root exactly
2(k − 1) + 1 times and thus configuration Ck is not reachable with a d-path-tree run for d < 2(k − 1) + 1.

Lemma 9. There is a Mpds M such that any reachable configuration can be visited through 3-path-tree runs, and for each k > 0 there
is a configuration that is not reachable in the SMpds (k, M).

There is a Mpds M such that any reachable configuration can be reached also in (2, M), and for any k > 0 there is a configuration
that is not reachable through by a k-path-tree run of M.

5. Solving location reachability for SMPDS

In this section, we address the location reachability problem for SMpds. We start by defining an abstraction, called
thread interface, that summarizes multiple context runs of a thread. Each thread interface is a tuple of pairs of control

S. La Torre et al. / Information and Computation 275 (2020) 104588 9
Thread 1 Thread 2

q0
push(a)−−−−→ q1

push(b)−−−−→ q2 −→ q3
push(c)−−−−→ q4 −→ q5

q5
push(a)−−−−→ q6

pop(a)−−−→ q7
pop(b)−−−→ q8

push(b)−−−−→ q9 −→ q10
pop(c)−−−→ q11

push(d)−−−−→ q12 −→ q13

q13
pop(b)−−−→ q14 −→ q15

push(c)−−−−→ q16 −→ q17

Fig. 7. A sample 2-scoped run of a Mpds with two stacks.

states representing the starting and the ending control states of the contexts that occur in the corresponding runs. Thus an
interface exactly captures the interaction of a thread with the rest of the system in some runs and therefore it is a suitable
abstraction for solving location reachability by first exploring the computations of the single threads. However, since the
stack content is entirely abstracted away, we will need a richer abstraction to deal with the general reachability problem
that will be addressed in the next section.

For the rest of this section we fix a bound k > 0, a k-SMpds M = (k, Q , Q I , ̃�n, δ) and �̃ = ⋃n
i=1 �i .

5.1. Thread interfaces

We start defining the notion of thread interface. Then, we show that when restricting to k-scoped runs, the whole
computation of a single thread across unboundedly many contexts can be indeed captured by composing thread interfaces
of size at most k. Moreover, under some conditions, the thread interfaces of a thread can be composed with the thread
interfaces of the other threads to summarize entire runs of a Mpds.

A thread interface is essentially an ordered tuple of pairs denoting each the starting and the ending control states of a
thread context. The contexts are listed in the order they occur in a run assuming that the first context starts with an empty
stack and each of the following contexts starts with the stack content that is left by the preceding one. In other words, a
thread interface stores the starting and the ending control states of the contexts of a multiple context run, and thus captures
all the multiple context runs that share this “interface”. Formally, we have:

Definition 3. (thread interface) For each h ∈ [n], a h-thread interface of M is a possibly empty tuple of pairs I =
〈in j, out j〉 j∈[m] , for some m ∈N (the dimension of I , also denoted dim(I)), such that if m > 0 there exists a multiple context
run ρ1, . . . , ρm of T h

M where for every j ∈ [m], ρ j = 〈 〈in j, w j〉 〉 �h
M 〈 〈out j, w ′

j〉 〉.

For the rest of this section, we use as running example a Mpds M5 with a run as in Fig. 7. We observe that the run
is 2-scoped. From the above definition, J1 = (〈q0, q3〉, 〈q5, q10〉, 〈q13, q15〉) is a 1-thread interface of M5 of dimension 3 and
J2 = (〈q3, q5〉, 〈q10, q13〉, 〈q15, q17〉) is a 2-thread interface of M5 of dimension 3.

For a thread interface I = 〈in j, out j〉 j∈[m] , a prefix of I is any 〈in j, out j〉 j∈[m′] with m′ ≤ m and a suffix of I is any
〈in j, out j〉 j∈[i,m] with i ≥ 1. Directly from the definition, we get that any prefix of a thread interface is also a thread in-
terface. Clearly this is not true in general for the suffixes since some stack symbol that is popped in a context of a suffix
might have been pushed in one of the contexts of the omitted prefix.

Proposition 10. Any prefix of a h-thread interface is also a h-thread interface.

For i = 1, 2, let Ii = 〈ini
j, outi

j〉 j∈[mi] be a h-thread interface of M , for some h ∈ [n]. We define two internal operations
over thread interfaces of a given thread. With I1 �1 I2 we denote the tuple obtained by appending I2 to I1. Formally,
I1 �1 I2 = 〈in j, out j〉 j∈[m1+m2] where in j = in1

j and out j = out1
j for j ∈ [m1], and inm1+ j = in2

j and outm1+ j = out2
j for j ∈ [m2].

The other operation is a variation of �1 where the last pair of I1 is composed with the first pair of I2. It is defined
when I1 and I2 are both not empty. Formally, if m1, m2 > 0 and out1

m1
= in2

1, then we denote with I1 �2 I2 the tuple
〈in j, out j〉 j∈[m1+m2−1] where in j = in1

j and out j = out1
j for j ∈ [m1 − 1], inm1 = in1

m1
, outm1 = out2

1, and inm1+ j = in2
j+1 and

outm1+ j = out2
j+1 for j ∈ [m2 − 1].

Directly from the definition of thread interface we get that both compositions define thread interfaces.

Lemma 11. Let Ii = 〈ini
j, outi

j〉 j∈[mi] be a h-thread interface of M, for some h ∈ [n] and i = 1, 2.

• I1 �1 I2 is a h-thread interface of dimension m1 + m2 .
• If out1

r1
= in2

1 , then I1 �2 I2 is a h-thread interface of dimension m1 + m2 − 1.

As observed in Section 3, a run decomposition naturally defines multiple context runs and thus also thread interfaces.
Given a k-scoped run ρ of a Mpds M with n stacks and let ρ1, . . . , ρ� be a decomposition of ρ into contexts, for h ∈ [n] the

10 S. La Torre et al. / Information and Computation 275 (2020) 104588
h-thread interface I = 〈in j, out j〉 j∈[m] defined by ρ1, . . . , ρ� is such that there are exactly m h-contexts in the decomposition
and the j-th h-context in the decomposition starts at in j and ends at out j , for j ∈ [m].

A canonical thread interface for ρ is a thread interface defined by a decomposition into maximal contexts. Interestingly,
it is possible to capture each canonical thread interface as the composition by �1 and �2 of thread interfaces of bounded
dimension. In fact, for the k-scoped restriction, in each run a push onto stack h is either matched within the next k
maximal h-contexts (including the current one) or never. As an example, consider again the 2-scoped run from Fig. 7.
Note that J1 and J2 are canonical thread interfaces for it, and J1 = (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉) and J2 =
(〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉) (the interfaces used in the compositions are all of dimension at most 2).

The above property is formally stated in the following lemma.

Lemma 12. Let k ∈N , M be a Mpds with n stacks, ρ be a k-scoped run of M, and for h ∈ [n], I be a canonical h-thread interface for
ρ .

There exist h-thread interfaces I0, . . . , Is of dimension at most k such that I = I0 � j1 I1 . . . � js Is with j1, . . . js ∈ [2].

Proof. Let I = 〈in j, out j〉 j∈[m] be a canonical h-thread interface for a run ρ . Thus, there exists a decomposition of ρ with
exactly m maximal h-contexts, say ρ1, . . . , ρm , such that ρ j starts at in j and ends at out j , for j ∈ [m].

We claim that if m > k, there are two h-thread interfaces I1 and I2 both of dimension less than m such that either
I = I1 �1 I2 or I = I1 �2 I2. We consider two cases.

The first case is when there are no push transitions in ρ1 that are matched by a pop transition outside ρ1. Since no
stack content pushed within ρ1 is used later, we get that I2 = 〈in j, out j〉 j∈[2,m] is a h-thread interface. From Proposition 10,
I1 = 〈in1, out1〉 is also a h-thread interface. Since both have dimension less than m and I = I1 �1 I2, we are done with this
case.

In the other case, i.e., when there is a push transition that is matched outside ρ1, we take the first such push transition
in ρ1. Denote with t its matching pop transition. Since ρ is k-scoped, t must occur in some ρi with i ≤ k. Also, according
to the stack behavior, if a portion ρ[j, j′] of ρ starts with a push transition of stack h and ends with a pop transition of
the same stack, then any other transition involving stack h within ρ[j, j′] must be matched and the matching transition
must also occur within ρ[j, j′]. Thus, let ρ ′

i and ρ ′′
i be the two contexts obtained by splitting ρi at the control state

q reached after taking transition t . From Proposition 10, we get that I1 = (〈in1, out1〉, . . . , 〈ini−1, outi−1〉, 〈ini, q〉 is a h-
thread interface. Moreover, since no stack content that is pushed in ρ1, . . . , ρi−1, ρ ′

i is popped in ρ ′′
i , ρi+1, . . . , ρm , I2 =

(〈q, outi〉, 〈ini+1, outi+1〉, . . . , 〈inm, outm〉) is also a h-thread interface. Also, from i ∈ [2, k] and k < m, we have that i ∈ [2, m −
1] must hold. Thus, we get that both interfaces have dimension less than m, thus I = I1 �2 I2 holds and the claim is proved
also in this case.

By recursively applying the above claim to the resulting thread interfaces until we get only thread interfaces of dimension
at most k, we get the lemma. �

Note that the above lemma does not hold if I is an arbitrary (non-canonical) thread interface. In fact, in a non-canonical
thread interface we can have several consecutive pairs that correspond to portions of a same maximal context. Thus, in
order to capture such thread interfaces the bound k may not suffice.

Thread interfaces can be composed to summarize entire runs of a given Mpds. We recall that each pair of a thread
interface essentially gives the control state update that is effected by a corresponding context of the underlying multiple
context run. Thus starting from an initial state, we can simulate a run by iteratively selecting pairs of the thread interfaces
to update the current control state, and the run can be constructed by stitching together the contexts corresponding to the
selected pairs. Therefore, a set of thread interfaces summarizes a set of runs of a Mpds if we can order all their pairs such
that: (1) each pair can be stitched to the following one, i.e., the ending control state of a pair matches the starting control
state of the following one, and (2) the pairs from a same thread interface occur in the same order as within the thread
interface. This condition is formally captured by the following definition.

For h ∈ [n], let Ih = 〈inh
j , outh

j 〉 j∈[mh] be a h-thread interface of M and denote D = ⋃
h∈[n]{〈h, j〉 | j ∈ [mh]}. For �, �′ ∈ [n],

we say that I1, . . . , In can be stitched from in�
1 through out�

′
m�′ if there exists a 1-to-1 mapping next : D \ {〈�′, m�′ 〉} →

D \ {〈�, 1〉} such that for each 〈h, j〉 ∈D \ {〈�′, m�′ 〉}:

1. outh
j = inh′

j′ where 〈h′, j′〉 = next(h, j) (i.e., next returns a pair that can be stitched to the given pair);

2. denoting next1(x) = next(x) and nexti(x) = next(nexti−1(x)) for i > 1, if nexti(h, j) = 〈h, j′〉 for some i ∈ N then j < j′
(i.e., the ordering induced by next is consistent with the local ordering within each thread interface).

Note that since next is a 1-to-1 mapping, it defines a linear ordering among all the pairs of I1, . . . , In .
Fig. 8 illustrates the stitching of linear interfaces J1 and J2 in our running example. In the figure, map next is denoted

with the dashed edges. Precisely, next is defined as next(1, j) = 〈2, j〉 for j ∈ [3] and next(2, j) = 〈1, j + 1〉 for j ∈ [2].
The sequence of pairs defined by next is 〈q0, q3〉, 〈q3, q5〉, 〈q5, q10〉, 〈q10, q13〉, 〈q13, q15〉, 〈q15, q17〉, which corresponds to the
perfect interleaving of the two thread interfaces J1 and J2. Thus, according to the above definition, J1 and J2 can be
stitched from q0 through q17.

S. La Torre et al. / Information and Computation 275 (2020) 104588 11
〈 q0 ,

J1

q3 〉

〈 q5 , q10 〉

〈 q13 , q15 〉

〈 q3 ,

J2

q5 〉

〈 q10 , q13 〉

〈 q15 , q17 〉

Fig. 8. Stitching of linear interfaces.

As already observed we can show that runs of Mpds can be fully characterized by tuples of thread interfaces.

Theorem 13. Let M be a Mpds with n stacks, and q be a control state of M. Then, there is a run of M that reaches q iff there are
I1, . . . , In such that:

1. for h ∈ [n], Ih is a (canonical) h-thread interface of M, and
2. I1, . . . , In can be stitched from an initial state of M through q.

Proof. The forward direction follows directly from the definitions. In fact, consider a run ρ from an initial state q0 to q.
Fix a decomposition of ρ into contexts and take the corresponding h-thread interfaces Ih for each h ∈ [n]. Define next to
match the ordering of pairs according to the fixed decomposition. Clearly, each pair in the sequence can be stitched to
the following one, and next is a 1-to-1 mapping and is consistent with the pair ordering within each thread interface Ih .
Therefore, I1, . . . , In can be stitched from q0 through q.

For the converse direction, let Ih = 〈inh
j , outh

j 〉 j∈[mh] be a h-thread interface of M for h ∈ [n] and suppose that I1, . . . , In

can be stitched from an initial state q0 of M through q. Thus, there are �, �′ ∈ [n] such that in�
1 = q0, out�

′
m�′ = q and denoting

D = ⋃
h∈[n]{〈h, j〉 | j ∈ [mh]}, there is a 1-to-1 mapping next : D \ {〈�′, m�′ 〉} → D \ {〈�, 1〉} such that (1) outh

j = inh′
j′ where

〈h′, j′〉 = next(h, j) and (2) if nexti(h, j) = 〈h, j′〉 for some i ∈N then j < j′ . For h ∈ [n] and j ∈ [mh], from Definition 3, we
can take contexts 〈 〈inh

j , uh
j 〉 〉 �h

M 〈 〈outh
j , vh

j 〉 〉 such that uh
1 = ε and for j < mh , uh

j+1 = vh
j .

Denote m = ∑
h∈[n] mh . We construct inductively on j ∈ [m] a run of M by stitching together the above contexts in the

order given by next.
We start with the context corresponding to the first pair of I� , i.e., 〈 〈in�

1, ε〉 〉 ��
M 〈 〈out�1, v�

1〉 〉. This clearly gives the run
ρ1 = 〈 〈q0, ε, . . . , ε〉 〉 �h1

M 〈 〈q1, w1
1, . . . , wn

1〉 〉 where h1 = �, q1 = out�1, w�
1 = v�

1 and wh
j = ε for h
= � (recall that q0 = in�

1).

For the inductive step, denote ρ j = 〈 〈q0, ε, . . . , ε〉 〉 �h1
M . . . �h j

M 〈 〈q j, w1
j , . . . , wn

j 〉 〉 with j > 0 and suppose that the last

context of ρ j corresponds to the i j-th pair of Ih j . Thus, q j = out
h j

i j
holds.

Now, let 〈h j+1, i j+1〉 = next(h j, i j). From property (1) of mapping next, we get that out
h j

i j
= in

h j+1
i j+1

and thus q j = in
h j+1
i j+1

.

Hence, in order to execute the context 〈 〈in
h j+1
i j+1

, u
h j+1
i j+1

〉 〉 �h j+1
M 〈 〈out

h j+1
i j+1

, v
h j+1
i j+1

〉 〉 from configuration 〈 〈q j, w1
j , . . . , wn

j 〉 〉 we just

need to show that w
h j+1
j = u

h j+1
i j+1

holds.

For this we observe that from property (2) of next, in ρ j the ordering of the contexts of a thread conforms to the
ordering of the corresponding pairs in the thread interface. In particular, if i j+1 = 1, 〈 〈in

h j+1
i j+1

, u
h j+1
i j+1

〉 〉 �h j+1
M 〈 〈out

h j+1
i j+1

, v
h j+1
i j+1

〉 〉 is

the first context of thread T
h j+1
M in ρ j , otherwise, the previous context of T

h j+1
M corresponds to the i j+1 − 1-th pair of Ih j+1 .

Clearly, w
h j+1
j = ε in the first case and w

h j+1
j = v

h j+1
i j+1−1 in the second case. Since by definition uh j+1

1 = ε and uh j+1
i j+1

= v
h j+1
i j+1−1,

we have that w
h j+1
j = u

h j+1
i j+1

must hold.

To conclude the proof we observe that next is a 1-to-1 mapping that is not defined on 〈�′, m�′ 〉. Thus, the last context of
ρm must correspond to this pair, and therefore qm = out�

′
m�′ = q, that concludes the proof. �

5.2. A fixed-point algorithm for location reachability

In this section, we present a fixed-point algorithm to solve the location reachability problem for k-SMpds that is based
on the computation of canonical thread interfaces.

The algorithm. One way to solve this problem is to compute nondeterministically n thread-interfaces, one for each thread, and
then by Theorem 13 check whether they form an M computation reaching a target control state. Unfortunately, this would

12 S. La Torre et al. / Information and Computation 275 (2020) 104588
Algorithm 1.

Initialization

I = {(q, τ∅) | q ∈ Q I }

Simulation

Let (q, τ) ∈ I and q′ such that first(τ (T i
M)) = 〈q, q′〉, for some i ∈ [n].

Add to I the pair (q′, τ ′) where

τ ′(t) =
{

tail(τ (T i
M)) if t = T i

M

τ (t) otherwise.

Thread-interface progression

Let (q, τ) ∈ I and τ (T i
M) be an empty thread interface for some i ∈ [n].

Add to I any pair (q, τ ′) where

τ ′(t) =
{

I if t = T i
M

τ (t) otherwise

and I is a thread interface of T i
M such that dim(I) ≤ k.

Fig. 9. Rules of Algorithm 1 (fixed-point algorithm solving the location reachability problem for SMpds).

only yield a semi-algorithm as we do not know, a priori, the number of contexts that are needed for each thread in order
to conclude that the target is not reachable. However, according to Lemma 12 such thread interfaces can be computed by
portions of bounded dimension. Moreover, the conditions of Theorem 13 can be checked by such portions. In particular, the
fixed-point algorithm we propose will take for each thread a thread interface of bounded dimension, then it will advance
in the simulation of a run of the Mpds by stitching the contexts of these interfaces until one of them will be entirely
consumed (this corresponds to advancing in the run by macro-steps covering each an entire context). At this point, a new
thread interface of bounded dimension is taken for the corresponding thread and the simulation is resumed. The iterations
halt as soon as a target control state is reached or no new simulations are possible. Since the number of thread interfaces
is finite for a given bound, the algorithm always terminates.

In the following we will refer to this algorithm as Algorithm 1. In greater detail, Algorithm 1 computes pairs of the
form (q, τ) where q is a control state (the state reached after the last simulated context) and τ is a map that assigns a
(possibly empty) thread-interface suffix to each thread. At each step of the algorithm, we either consume the first pair of a
thread-interface suffix (simulation rule) or append a thread interface (thread-interface progression rule).

The simulation rule can be applied to any pair of the form (q, τ) such that there is a thread-interface suffix mapped by
τ whose first pair starts with q. For a thread-interface suffix I = 〈in j, out j〉 j∈[i,m] , we denote with first(I) the first pair of
I , i.e., 〈ini, outi〉, and with tail(I) the rest of I , i.e., 〈in j, out j〉 j∈[i+1,m] . An application of the simulation rule to (q, τ) with
τ (t) = 〈in j, out j〉 j∈[m] for a thread t and q = in1 would yield (out1, τ ′) where τ ′(t) = tail(τ (t)) and τ ′(t′) = τ (t′) for t
= t′ .

The thread-interface progression rule is very simple: from (q, τ) such that τ (t) is empty for some thread t , we can add
(q, τ ′) such that τ ′(t) is any thread interface of t of dimension at most k and τ ′(t′) = τ (t′) for t′
= t .

We denote with I the set of pairs computed by the algorithm and with τ∅ the map that assigns each thread with an
empty thread-interface. The set I is initialized to all pairs of the form (q, τ∅) where q is an initial control state.

The detailed rules of Algorithm 1 are given in Fig. 9. The thread interfaces of dimension at most k can be computed in a
standard way, see for example [12], and thus we omit it. The algorithm halts as soon as a control state in the target set is
reached or no more tuples can be added to the set I . In the first case, it outputs YES, otherwise it outputs NO. Termination
of Algorithm 1 is guaranteed since there are finitely many control states and thread interfaces (and thus thread-interface
suffixes).

Correctness of the algorithm. To show correctness, we will argue that the fixed-point algorithm described above discovers the
existence of a run ρ that leads to a target control state by computing the thread interfaces (one for each thread) for a
maximal decomposition of ρ .

We start by illustrating this with an example. Consider again the run of Fig. 7 along with the corresponding canonical
thread interfaces J1 = (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉) and J2 = (〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉). Fig. 10 gives a
sequence of steps of our algorithm that mimics this run using the above decomposition of J1 and J2 via �1 and �2. Starting
from (q0, τ∅) through two applications of the thread-interface progression rule (denoted with P�−→ in the figure), we add the
pair (q0, τ1) where τ1(T 1

M) = (〈q0, q3〉, 〈q5, q8〉) and τ1(T 2
M) = (〈q3, q5〉, 〈q10, q13〉) (τ1 maps each thread to the first thread

interface in the considered decomposition of respectively J1 and J2). Then, through two applications of the simulation
rule (denoted with S�−→ in the figure), we add (q5, τ2) where τ2(T 1) = (〈q5, q8〉) and τ2(T 2) = (〈q10, q13〉). Now, from
M M

S. La Torre et al. / Information and Computation 275 (2020) 104588 13
(
q0,

[∅
∅

])
P�−→

(
q0,

[
(〈q0,q3〉, 〈q5,q8〉)

∅
])

P�−→
(

q0,

[
(〈q0,q3〉, 〈q5,q8〉)

(〈q3,q5〉, 〈q10,q13〉)
])

S�−→

(
q3,

[
(〈q5,q8〉)

(〈q3,q5〉, 〈q10,q13〉)
])

S�−→
(

q5,

[
(〈q5,q8〉)

(〈q10,q13〉)
])

S�−→
(

q8,

[∅
(〈q10,q13〉)

])
P�−→

(
q8,

[
(〈q8,q10〉, 〈q13,q15〉)

(〈q10,q13〉)
])

S�−→
(

q10,

[
(〈q13,q15〉)
(〈q10,q13〉)

])
S�−→

(
q13,

[
(〈q13,q15〉)

∅
])

S�−→
(

q15,

[∅
∅

])
P�−→

(
q15,

[∅
(〈q15,q17〉)

])
S�−→

(
q17,

[∅
∅

])

Fig. 10. An example of application of the rules of Algorithm 1.

(q5, τ2) first 〈q5, q8〉 is consumed, then (〈q8, q10〉, 〈q13, q15〉) is added for thread T 1
M , and finally 〈q8, q10〉 is consumed. This

corresponds to simulate the maximal context of T 1
M from q5 through q10. Also, note that the two consecutive applications

of the simulation rule concern the same thread. This captures the semantics of composition �2, and thus for thread T 1
M the

sequence of rule applications from Fig. 10 computes J1 exactly as (〈q0, q3〉, 〈q5, q8〉) �2 (〈q8, q10〉, 〈q13, q15〉). For thread T 2
M ,

the sequence from Fig. 10 computes J2 as (〈q3, q5〉, 〈q10, q13〉) �1 (〈q15, q17〉) (the simulation of the second thread interface
starts after that a context of the other thread has been simulated).

Theorem 14. Let M be an Mpds with n stacks, q be an M control state, I be the set computed by Algorithm 1 and k ∈N . Then, q is
reachable in a k-scoped run of M iff (q, τ) ∈ I for some map τ .

Proof. We start proving the forward direction.
Let ρ be a k-scoped run of M ending at a configuration with control state q. We show that (q, τ∅) is added to I by our

algorithm.
First, recall that from Theorem 13, there must be I1, . . . , In and a 1-to-1 mapping next such that: (1) for h ∈ [n], Ih is

a canonical h-thread interface of M , and (2) I1, . . . , In can be stitched from an initial state of M through q in the ordering
given by next.

Starting from (q0, τ∅), a sequence of applications of the rules of our algorithm that leads to add (q, τ∅) to I can be
obtained by consuming the pairs of I1, . . . , In in the ordering given by next. In fact, from Lemma 12, for h ∈ [n], we get
Ih = Ih,0 � jh,1 . . . � jh,sh

Ih,sh where Ih,0, . . . , Ih,sh are h-thread interfaces of dimension at most k and jh,1, . . . , jh,sh ∈ [2].
Thus, each thread interface Ih is explored by adding via the thread-interface progression rule its bounded portions: we first
add Ih,0, then we add Ih,1 when Ih,0 is entirely consumed, and so on. The run is simulated by consuming the pairs in
the added interfaces. Note that for h ∈ [n], each pair 〈q, q′〉 of Ih is either (1) a pair also of some Ih,i , or (2) is split into
a pair 〈q, q′′〉 at the end of some Ih,i and a pair 〈q′′, q′〉 at the beginning of Ih,i+1, and jh,i+1 = 2 (i.e., Ih,i and Ih,i+1 are
composed through �2). Thus to consume the pairs from this second case, we need two applications of the simulation rule
interleaved with an application of the thread-interface progression rule. For the other pairs one application of the simulation
rule suffices. Recall also that the simulation rule updates the control state, with the ending state of the consumed pair. Thus,
once all the pairs of I1, . . . , In will be consumed, the control state is updated to q and therefore the pair (q, τ∅) is added to
I .

For the other direction, we show a stronger property, that is, if π is the sequence of applications of the algorithm
rules that leads to add (q, τ) to I then there is a k-scoped run ρ of M that reaches q and can be decomposed into
contexts ρ1, . . . , ρm such that: denoting ini and outi respectively the starting and ending control states of ρi for i ∈ [m],
(in1, out1), . . . , (inm, outm) is the ordered sequence of control state pairs consumed in the applications of the simulation
rule in π . We show this property by induction on the length of π .

The base case is trivial. For the initialization rule, (q, τ∅) ∈ I for each initial control state q of M , and clearly q is
reachable in M (within zero steps).

Suppose now by induction that the above statement holds for each pair that is added to I with at most d > 0 rule
applications. Consider a sequence π of d + 1 rule applications that adds (q, τ) to I from a pair (q′, τ ′). The interesting case
is when (q, τ) is added from (q′, τ ′) by applying the simulation rule. In fact, if (q, τ) is added from (q′, τ ′) by applying
the thread-interface progression rule, we get that q = q′ holds and thus the property holds directly from the induction
hypothesis.

If (q, τ) is added by applying the simulation rule, from the definition, there must be a pair 〈q′, q〉 that starts one of
the thread-interface suffixes mapped by τ ′ . Denote with I such suffix and with T the corresponding thread. Moreover, let
J = I ′ �1 I be the thread interface that was added in the last thread progression rule applied to thread T along π .

If I ′ is empty, i.e., I is exactly the thread interface added by the thread progression, then by definition there is a multiple
context run ρ I corresponding to I . Thus, we apply the induction hypothesis to (q′, τ ′) and denote ρ ′ the corresponding

14 S. La Torre et al. / Information and Computation 275 (2020) 104588
k-scoped run of M . Define ρ as the run obtained by appending the first context of ρ I to ρ ′ . Since no previously pushed
symbol is popped in the added context, ρ is still k-scoped. Moreover, we append to ρ ′ a context that matches the pair of
control states used in the simulation rule, thus by applying the induction hypothesis we get that ρ matches the sequence
of control state pairs used in the application of simulation rules in π , and we are done with this case. For the remaining
case, i.e., when I ′ is not empty, we reason analogously, except for arguing that ρ is k-scoped. In fact, the context we add
is not the first one in a multiple context run, and thus can pop stack symbols introduced in the previous contexts of such
run. However, since we bound the size of the thread interfaces to k, the popped symbols were certainly pushed in the last
k contexts of thread T and thus ρ is k-scoped, that concludes the proof. �

As for the computational complexity of our fixed-point algorithm, we observe the following. Computing a thread interface
takes time polynomial in |Q | (reachability of single-stack pushdown systems) and the number of different tuples of the
form 〈p j, q j〉 j∈[m] where p j, q j ∈ Q and m ≤ k is O (|Q |2k). Thus the total number of different pairs (q, τ) that can be
added to I is O (|Q |2kn+1). Further, the initialization takes constant time, and from each tuple at most n simulation steps
(one for each thread interface suffix) and O (|Q |2kd) thread-interface progression steps can be taken where d is the number
of components of the tuple containing an empty thread interface (we can select a new thread interface for each one of
the empty components). Moreover, the number of different tuples that have an empty thread interface in the same d
components is O (|Q |2k(n−d)+1), thus the overall number of different thread-interface progression steps from all such tuples
is O (|Q |2kn+1). Therefore, the total number of different thread progression steps that can be taken is O (2n |Q |2kn+1), and
thus our fixed point algorithm can be implemented to take O (2n |Q |2kn+1) time.

We further observe that we can implement our algorithm to use only polynomial space in the number of threads and
the bound k. In fact, at each iteration we can store only the current pair not all the set I and select nondeterministically
the next rule to apply (in this case thread interfaces are picked by first guessing a tuple and then checking that it is indeed
a thread interface). The algorithm will halt as soon as we compute a pair with control state in the target set or we have
reached a number of iterations that equals the maximum number of pairs that can be added to I . This shows that the
location reachability problem for SMpds is in Pspace.

This upper bound is also tight for both parameters. In fact, by fairly standard constructions we can reduce the member-
ship problem for a Turing machine working in polynomial space to both the location reachability problem for an n-stack
2-SMpds and a 2-stack 2k-SMpds. In the first case, we use the stacks as registers and maintain the configuration of the
Turing machine one cell for each stack. A cell update will require first to read the content of the corresponding stack by
popping it, and then to push the new content onto it. Cells are updated in a round-robin fashion simulating a scan of the
tape from left to right. Control states are used guide the round robin and store the content of the neighbor cells: the content
of the left cell is read, while that of the right cell is nondeterministically guessed and then checked when reading it. Since
each symbol that is pushed is popped in the next context of the same stack, the described SMpds is 2-scoped. In the second
case, the tape content is maintained into a stack and its updated by moving it into the other stack. Thus each pop from one
stack is followed by a push onto the other stack, and thus the maximum number of maximal contexts between a push and
a matching pop of the same stack is 2k.

We get the following theorem (where k is assumed to be encoded in unary).

Theorem 15. The location reachability problem for k-SMpds is Pspace-complete, and hardness can be shown both with respect to the
number of stacks and the bound k.

6. Solving the configuration reachability problem for SMPDS

In this section, we address the reachability problem for SMpds for an arbitrary set of target configurations given as the
cross product of regular languages of stack contents (one for each stack). We will show that reachability in this case is still
Pspace-complete as for the location reachability problem addressed in the previous section.

Since we need to account also for the stack contents, we introduce a new abstraction called layered stack automaton. For
a thread T , an �-layered stack automaton captures the top portion of its stack which corresponds to the symbols that were
pushed within the last � contexts of T . The automaton is structured into layers that are added incrementally by applying for
each layer a saturation procedure similar to the one given in [5] for standard (one-stack) pushdown systems. We recall that
iterating such a saturation procedure a bounded number of times is quite straightforward and was already used in [1] to
give a decision algorithm for the reachability problem up to k context-switches. However, in our case, we need to account
for unboundedly many context-switches and the notion of layered stack automaton by itself does not suffice (we would
need to use layered stack automata with unbounded number of layers).

Since we restrict to k-scoped computations, only the symbols that were pushed within the last k contexts are used in
the pop transitions. Thus, we can use �-layered stack automata with � ≤ k to keep track of the meaningful top portion
of the stack during a computation. We hence relate the layered automata via a successor relation capturing that a layered
automaton A is a successor of a layered automaton B if A is obtained by adding a new layer to B via the saturation
procedure.

The bounded layered automata connected via the successor relation form a thread automaton, that is, a finite automaton
that accepts for a thread all the stack contents that can occur in a configuration that is reachable along a k-scoped run. In

S. La Torre et al. / Information and Computation 275 (2020) 104588 15
a thread automaton, the states keep track of the contexts of a thread and, via the layered automaton, of the portion of the
stack that was pushed within it. The automaton explores the contexts backwards and at each context that yields a portion
w of the stack that is not popped out in the rest of the run, it simulates the top layer of the current layered automaton by
reading w . We observe that a run of a thread automaton also captures a thread interface by listing its pairs in the reverse
order.

To solve the reachability problem for k-SMpds, we thus construct a finite automaton R that for each tuple of the form
(w1, . . . , wn) such that 〈 〈q, w1, . . . , wn〉 〉 is a configuration that is reachable within a k-scoped run, it accepts at least an
interleaving of w1, . . . , wn . This automaton uses as components a thread automaton for each thread and synchronizes all
of them by picking the next context (among the possible next ones) such that it can be stitched to the last processed one.
Thus, assuming that the stack contents of the target set are expressed by finite automata, we can modify R to simulate
such automata in parallel with the thread automata by a standard cross product, that reduces the configuration reachability
to standard reachability for finite automata.

For the rest of this section we fix a bound k > 0, a k-SMpds M = (k, Q , Q I , ̃�n, δ), and � = ⋃n
i=1 �i .

6.1. Layered stack automata

For � ≥ 0, an �-layered stack automaton A of M is essentially a finite automaton structured into (� + 1) layers whose set
of states contains � copies of each q ∈ Q (one for each layer) along with a new state qF which is the sole final state and
the sole state of layer 0. The input alphabet is �h for some stack h. Transitions are only between states of the same layer
or from a layer to a lower layer, i.e., they are of the form (s, γ , s′) where γ ∈ �h ∪ {ε} and the layer of s′ is not larger than
the layer of s (note that layered automata may have ε-transitions). Moreover, there are no transitions leaving from qF and
every state is either isolated or connected to qF by a run. Formally, we have:

Definition 4. (layered stack automaton) Given � ≥ 0, an �-layered stack automaton A of M over �h is a finite automaton
(S, �h,
, S0), where h ∈ [n], �h is the input alphabet and:

1. S = ⋃�
i=0 Si is the set of states where S0 = {qF } and Si = {〈q, i〉 | q ∈ Q }, for i ∈ [�];

2.
 ⊆ S × (�h ∪ {ε}) × S is the transition relation such that if (s, γ , s′) ∈
, for s ∈ Si , s′ ∈ S j , then i > 0 and i ≥ j;
3. for each state s ∈ S , either there is a run from s to qF or s is isolated (i.e., there are no transitions involving s);
4. there is at least a state s ∈ S� that is not isolated.

For i ∈ [0, �], Si denotes the layer i of A. S� is called the top layer and � is referred to as the top-layer index. For states
s1, s2, the language accepted by A from s1 to s2 is denoted L(A, s1, s2). Moreover, if s1 = 〈q, �〉 and s2 = qF , we also denote
L(A, s1, s2) simply as L(A, q) and say that a configuration 〈 〈q, w〉 〉 is accepted by A if w ∈L(A, q). �

Note that two �-layered stack automata over the same alphabet �h may differ only on the set of transitions and the only
layered stack automaton over the alphabet �h of top-layer index 0 has only the state qF and no transitions. In the following,
we denote with Aε

h the layered stack automaton of top-layer index 0 with input alphabet �h . Moreover, we often refer to a
state 〈q, i〉 of a layered stack automaton as the copy of q in layer i.

6.1.1. Saturation procedure
Let A be an �-layered stack automaton A with alphabet �h .
With Sat(A) we denote the layered stack automaton A′ over �h , obtained by applying to A the saturation procedure

from [5] with respect to the internal transitions and the push and pop transitions involving stack h. The procedure is
applied such that the new transitions that are added are all leaving from the top-layer states and only states in the top
k layers are involved (according to the k-scoped limitation). Namely, let � > 0 be the top layer index (if � = 0, Sat does
nothing), the saturation procedure consists of repeating the following steps until no more transitions can be added (we let
γ ∈ �h in the following):

• for an internal transition (q, q′) ∈ δ: (〈q′, �〉, ε, 〈q, �〉) is added to set of transitions provided that 〈q, �〉 is connected to
qF ;

• for a push transition (q, q′, γ) ∈ δ: (〈q′, �〉, γ , 〈q, �〉) is added to set of transitions provided that 〈q, �〉 is connected to
qF ;

• for a pop transition (q, γ , q′) ∈ δ: (〈q′, �〉, ε, 〈q′′, �′〉), with � − k < �′ ≤ �, is added to the set of transitions provided that
there is a path of A′ labeled γ from 〈q, �〉 to a state 〈q′′, �′〉 (note that such a path may contain an arbitrary number of
ε-edges; also, 〈q′′, �′〉 is not isolated, and thus, connected to qF by definition).

Note that all the transitions that are added in the above saturation procedure either stay within the top layer or are
from a top-layer state to a lower layer state. In particular, the transitions that cross layers are added only through a pop
transition and thus are ε-transitions. Moreover, the ending state of an added transition is connected to qF through a path.
Thus, we get:

16 S. La Torre et al. / Information and Computation 275 (2020) 104588
Proposition 16. if A is an �-layered stack automaton then Sat(A) is also an �-layered stack automaton.

We further remark that since the saturation procedure adds only transitions to states of the form 〈p, �′ 〉 for p ∈ Q and
�′ ∈ [� − k + 1, �], no direct transition to qF is added even if � < k.

In the following, we will be interested in layered automata whose layers match the contexts of k-scoped multiple con-
text runs. We say that an �-layered automaton A matches a k-scoped multiple context run ρ1, . . . , ρ� of T h

M if: for every
configuration 〈 〈q, y〉 〉 of ρ� such that y ∈ L(A, q), there is an accepting run of A over y where for every i ∈ [�] and every
symbol γ of y that was pushed in context ρi , γ is read through a transition within layer i.

The crucial properties of the above saturation procedure are stated in the following lemma.

Lemma 17. Let M be a k-SMpds, A and A′ be �-layered stack automata of M over �h, and 〈q, �〉 be the sole state which is not isolated
in the top layer of A. If A′ = Sat(A) then:

1. if there is a path in A′ from a state 〈p1, �〉 to a state 〈p2, �〉 labeled with x ∈ �∗
h , then there is a context 〈 〈p2, ε〉 〉 �h

M 〈 〈p1, x〉 〉 (i.e.,
paths in the top-layer summarize contexts);

2. for every y′ ∈ L(A′, q′), there exists a context 〈 〈q, y〉 〉 �h
M 〈 〈q′, y′〉 〉 such that y ∈ L(A, q) (i.e., each configuration of thread T h

M
which is accepted by A′ is reachable from a configuration accepted by A);

3. for every k-scoped multiple context run ρ1, . . . , ρ� , where ρ� = 〈 〈q, y〉 〉 �h
M 〈 〈q′, y′〉 〉, if y ∈ L(A, q) and A matches ρ1, . . . , ρ�

then y′ ∈ L(A′, q′) (i.e., the last context of any k-scoped multiple context run of T h
M that is matched by A always ends with a

configuration accepted by A′ whenever it starts from a configuration accepted by A).

Proof. We prove parts 1 and 2 by induction on the number of transitions that are added in the saturation procedure. In
the following, for d ≥ 0, we will denote with Ad the �-layered automaton resulting by adding d transitions to A though the
saturation procedure.

We start with part 1. The base case is trivial since there are no transitions at the top layer of A.
For the induction step, suppose that the statement holds after that d ≥ 0 transitions have been added in the saturation

procedure and let e = (〈q1, �〉, a, 〈q2, �〉), for a ∈ �h ∪ {ε}, be the transition that is added next.
Let π be any top-layer path of Ad+1 containing e, i.e., π = π1.e.π2, and let x = x1.a.x2 be the word labeling π with xi

labeling πi for i ∈ [2]. Denoting 〈p1, �〉 and 〈p2, �〉 respectively the starting and ending states of π , since π1 and π2 are also
paths of Ad we can apply the induction hypothesis and get 〈 〈q1, ε〉 〉 �h

M 〈 〈p1, x1〉 〉 and 〈 〈p2, ε〉 〉 �h
M 〈 〈q2, xi〉 〉, thus we only

need to show the existence of a context 〈 〈q2, ε〉 〉 �h
M 〈 〈q1,a〉 〉. We do this by case inspection on the rule that is applied to

add e.
If e is added by a push or an internal transition of M , by applying such a transition we clearly get 〈 〈q2, ε〉 〉 →h

M 〈 〈q1,a〉 〉
and thus 〈 〈q2, ε〉 〉 �h

M 〈 〈q1,a〉 〉 holds. If e is added by a pop transition, from the corresponding rule of the saturation
procedure, there must be a pop transition of the form (p, γ , q1) and a path π ′ of Ad labeled with γ from 〈p, �〉 to
〈q2, �〉 (note that we are assuming that π lays entirely in the top layer). By applying the induction hypothesis to π ′ ,
we get that 〈 〈q2, ε〉 〉 �h

M 〈 〈p, γ 〉 〉 holds. Thus extending this context by applying the pop transition (p, γ , q1), we get
〈 〈q2, ε〉 〉 �h

M 〈 〈p, γ 〉 〉 →h
M 〈 〈q1, ε〉 〉 that concludes this part of the proof (recall that a = ε in this case).

We prove now part 2 of the lemma. The base case trivially holds since all the languages L(A, q′) for q′
= q are empty.
For the induction step, suppose that the statement holds after that d ≥ 0 transitions have been added in the saturation

procedure and let e be the transition that is added next.
Pick any y′ ∈ L(Ad+1, q′). We recall that, by definition, in an �-layered stack automaton cross-layer transitions can only

take to states of lower indexed layers. Thus, a path labeled with y′ from 〈q′, �〉 through qF can be split into three parts: a
first part π1 that stays all within the top layer, a transition e′ = (〈q1, �〉, a, 〈q2, i〉) to a lower indexed layer i < �, and final
part π2 that leads to qF . According to this splitting, y′ can be decomposed as x.a.z. Observe that since π1 is from 〈q′, �〉
through 〈q1, �〉, we can apply part 1 of the lemma, and thus there is a context σ = 〈 〈q1, ε〉 〉 �h

M 〈 〈q′, x〉 〉.
If e′
= e, since any transition added by the saturation procedure starts from a top-layer state, then e must occur in π1

and thus a.z ∈ L(Ad, q′
1). By the induction hypothesis, we get that there exists a context 〈 〈q, y〉 〉 �h

M 〈 〈q1,a.z〉 〉 such that
y ∈ L(A, q). By combining this with context σ above, we get 〈 〈q, y〉 〉 �h

M 〈 〈q1,a.z〉 〉 �h
M 〈 〈q′, x.a.z〉 〉, and thus the statement

holds in this case.
Now, suppose that e′ = e, i.e., the transition leaving the top layer is e. We recall that in the saturation procedure the

crossing layer transitions are only added through a pop transition and in this case the added transition is labeled with
ε (i.e., a = ε). Thus, according to the pop-transition rule, there must be a pop transition of M of the form (p, γ , q1) and
there is a path of Ad from 〈p, �〉 to 〈q2, i〉 that is labeled with γ . Hence, there is a path of Ad from 〈p, �〉 that is labeled
with γ .z (note that the saturation procedure does not add transitions that do not have at least an endpoint at the top
level and π2 starts from layer i < �), and therefore, γ .z ∈L(Ad, p). By applying the induction hypothesis, we get that there
is a context 〈 〈q, y〉 〉 �h

M 〈 〈p, γ .z〉 〉. We can then extend this context with the pop transition thus obtaining the context
〈 〈q, y〉 〉 �h

M 〈 〈q1, z〉 〉. Again by combining this with context σ above, we get 〈 〈q, y〉 〉 �h
M 〈 〈q1, z〉 〉 �h

M 〈 〈q′, x.a.z〉 〉 (recall a = ε),
and thus the statement holds also in this case.

S. La Torre et al. / Information and Computation 275 (2020) 104588 17
For part 3 of the lemma, we proceed by induction on the number d of transition steps in a context that starts from
configuration 〈 〈q, y〉 〉 with y ∈L(A, q).

The base case (zero transitions) trivially holds for q = q′ and y = y′ .
For the induction step, consider a context σ of the form 〈 〈q, y〉 〉 �h

M 〈 〈p, z〉 〉 →h
M 〈 〈q′, y′〉 〉 with d + 1 transitions and such

that y ∈ L(A, q). By the induction hypothesis, z ∈ L(A′, p). If transition 〈 〈p, z〉 〉 →h
M 〈 〈q′, y′〉 〉 is an internal one, then y′ = z

and the saturation procedure would add a transition from 〈q′, �〉 to 〈p, �〉 in A′ labeled with ε. Similarly, if the transition
pushes a symbol γ onto stack h, then y′ = γ .z and a transition from 〈q′, �〉 to 〈p, �〉 labeled with γ is added in A′ . In
both cases, from z ∈ L(A′, p) we get y′ ∈ L(A′, q′). In the remaining case, i.e., when 〈 〈p, z〉 〉 →h

M 〈 〈q′, y′〉 〉 is a pop transition
(p, γ , q′), then z = γ y′ and since σ is by hypothesis a context of a k-scoped run, γ was pushed onto the stack in a context
ρi with � −k < i ≤ � (i.e., γ was pushed either in this context or in one of the previous k −1 contexts). Since by the induction
hypothesis z ∈ L(A′, p) and A matches the k-scoped multiple context run ρ1, . . . , ρ� , there is a path of A′ labeled γ from
〈p, �〉 to a state 〈q′′, i〉 and a path from 〈q′′, i〉 to qF labeled y′ . By the saturation algorithm, a transition (〈q′, �〉, ε, 〈q′′, i〉)
must be added to A′ and therefore y′ ∈L(A′, q′). Thus also part 3 holds, and therefore the lemma holds. �
6.1.2. Successor relation for layered automata

Given a bound m, by Lemma 17 we can construct a set of layered automata that accept all the stack contents that can
occur in a configuration of any k-scoped run of M with at most m-maximal contexts. For this, we define an operation that
adds a new layer to a layered automaton A and connects through an ε transition a state from the top layer of the resulting
automaton to a non-isolated state of the top layer of A.

Formally, for an �-layered automaton A with � > 0 and a top-layer state 〈q, �〉 of A that is connected to qF , with
Add(A, p, q) we denote the (� + 1)-layered stack automaton obtained from A by adding the transition (〈p, � + 1〉, ε, 〈q, �〉).
We extend this function also to Ah

ε , and denote with Add(Ah
ε, p, qF) the 1-layered stack automaton containing only the

transition (〈p, 1〉, ε, qF).
For an �-layered stack automaton over �h with � > 0 and control states p, q of M where 〈q, �〉 is connected to qF in A,

we define the successor of A by (p, q), denoted Succ(A, p, q), as Sat(Add(A, p, q)). Consistently with what we have done for
Add, we extend this notion to Ah

ε and denote Succ(Ah
ε, p, qF) = Sat(Add(Ah

ε, p, qF)).
According to Lemma 17, if A accepts contents of stack h that can be reached in the final configuration of a k-scoped

run ρ of M and matches the corresponding multiple context run, q is the control state of the last h-context in ρ and p is
the control state of the ending configuration of ρ , then Succ(A, p, q) accepts all the stack contents that can be reached by
extending ρ with a context of stack h that starts with a configuration with control state p.

We iterate the definition of Succ and define Succ(A, 〈pi, qi〉i∈[m]) inductively as Succ(A, p1, q1), if m = 1, and
Succ(A′, pm, qm) where A′ = Succ(A, 〈pi, qi〉i∈[m−1]), otherwise.

From Proposition 16 and the above definitions, we get:

Proposition 18. If A is an �-layered stack automaton, then Succ(A, 〈pi, qi〉i∈[m]) is an (� + m)-layered stack automaton.

As already observed, from the definition of Sat, all the transitions that are added start from top-layer states and no
transition is deleted. Thus we have:

Proposition 19. Let A be an �-layered automaton. If A′ = Succ(A, 〈pi, qi〉i∈[m]) then for each p and �p ≤ �: (〈p, �p〉, τ , 〈q, �q〉) is a
transition of A if and only if it is also a transition of A′.

As a corollary of the above proposition we have that if a layered automaton A′ is obtained by iterating the function Succ
from a layered automaton A, then the set of configurations accepted from the copy of q in layer �′ of A is the same as the
one accepted from the copy of q in the same layer of A′ .

Corollary 20. Let A be an �-layered automaton. If A′ = Succ(A, 〈pi, qi〉i∈[m]) then L(A, 〈q, �′〉, qF) = L(A′, 〈q, �′〉, qF) for each q
and �′ ≤ �.

Moreover, again from the definition of Sat, the transitions over a stack symbol are added only for the push transitions
and are internal to the top layer. Thus in the construction of Succ(Ah

ε, 〈pi, qi〉i∈[�]) the addition of these transitions will occur
in different layers matching a sequence of contexts ρ1, . . . , ρ� where ρi = 〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�]. Thus we
have:

Proposition 21. Let A = Succ(Ah
ε, 〈pi, qi〉i∈[�]). A matches any k-scoped multiple run ρ1, . . . , ρ� of T h

M where w1 = ε and ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�].

The following property is crucial in our solution for the reachability problem.

18 S. La Torre et al. / Information and Computation 275 (2020) 104588
Theorem 22. Let M be a k-SMpds and A = Succ(Ah
ε, 〈pi, qi〉i∈[�]).

A is an �-layered stack automaton such that:
wi+1 ∈ L(A, 〈qi+1, i〉, qF) for i ∈ [�] if and only if a k-scoped multiple context run ρ1, . . . , ρ� of T h

M exists such that ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [�].

Proof. From Proposition 18, we get that A is an �-layered stack automaton. Denoting Am = Succ(Ah
ε, 〈pi, qi〉i∈[m]) for m ∈ [�].

By Corollary 20, to complete the proof we only need to show by induction on m ≥ 1 that:
wm+1 ∈ L(Am, qm+1) if and only if a k-scoped multiple context run ρ1, . . . , ρm of T h

M exists such that ρi = 〈 〈pi, wi〉 〉 �h
M〈 〈qi+1, wi+1〉 〉 for i ∈ [m].

For the base case, i.e., m = 1, we observe that since A1 = Succ(Ah
ε, p1, q1), if w2 ∈ L(A1, q2) then there must be a path

from 〈q2, 1〉 through 〈p1, 1〉 labeled with w2 (recall that p1 is connected to q1 = qF through an ε-transition). From part 1 of
Lemma 17, we get that 〈 〈p1, ε〉 〉 �h

M 〈 〈q2, w2〉 〉. Vice-versa, if there is a run 〈 〈p1, ε〉 〉 �h
M 〈 〈q2, w2〉 〉, from part 3 of Lemma 17,

since ε ∈L(A1, p1) we get that w2 ∈L(A1, q2).
For the induction step, we assume that the theorem holds for m − 1. Denote A′ = Add(Am−1, pm, qm). Clearly, by defini-

tion, Am = Sat(A′) holds.
Assume first that wm+1 ∈ L(Am, qm+1). From part 2 of Lemma 17, then there is a context ρm = 〈 〈pm, wm〉 〉 �h

M〈 〈qm+1, wm+1〉 〉 such that wm ∈L(A′, pm). Since A′ is obtained from Am−1 by adding an ε-transition from pm to qm , we also
get that wm ∈L(Am−1, qm). By applying the induction hypothesis, we get that a k-scoped multiple context run ρ1, . . . , ρm−1
of T h

M exists such that ρi = 〈 〈pi, wi〉 〉 �h
M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m −1]. Thus, we get that there is a k-scoped multiple context

run ρ1, . . . , ρm of T h
M such that ρi = 〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m].
For the other direction, assume that there exists a k-scoped multiple context run ρ1, . . . , ρm of T h

M such that ρi =
〈 〈pi, wi〉 〉 �h

M 〈 〈qi+1, wi+1〉 〉 for i ∈ [m]. From the induction hypothesis we get that wm ∈ L(Am−1, qm), and thus wm ∈
L(A′, pm). Since there is a context 〈 〈pm, wm〉 〉 �h

M 〈 〈qm+1, wm+1〉 〉, from Proposition 21 and part 3 of Lemma 17 then also
wm+1 ∈L(Am, qm+1) and thus the lemma holds. �

Directly from the definition of thread interface, we get that for states qi and pi as in the above lemma, 〈pi, qi+1〉i∈[m] is
a h-thread interface of M . Thus, the following corollary holds.

Corollary 23. Let M be a k-SMpds. If Succ(Ah
ε, 〈pi, qi〉i∈[m]) is defined, then the tuple 〈pi, qi+1〉i∈[m] is a h-thread interface of M.

6.2. Capturing thread configurations for unboundedly many contexts: thread automata

We start giving a property that will be used to construct an automaton that accepts the thread configurations that are
reachable in k-scoped multiple context runs with any number of contexts.

For an �-layered automaton A, denote with Topk(A) the layered automaton obtained from A by keeping only the top
k layers (along with layer 0). Since in a layered automaton each state is either isolated or connected to qF by a run, by
removing the layers of A we preserve this property for the remaining states in Topk(A). Namely, we define Topk(A) as
follows. If � ≤ k, Topk(A) is A, otherwise Topk(A) is the k-layered automaton whose transition set is the smallest set such
that: if (〈q, j〉, γ , s) is a transition of A with j > � − k, then (〈q, j − � + k〉, γ , s′) is a transition of Topk(A) where s′ is
〈q′, j′ − � + k〉, if s = 〈q′, j′〉 for some j′ ∈ [� − k + 1, k], and is qF , otherwise.

We recall that for an �-layered automaton A, Sat adds only transitions from a top-layer state to states of the form 〈p, �′〉
where p ∈ Q and �′ ∈ [� − k + 1, �], and no direct transition to qF is added even if � < k. Thus directly from the definitions
we get the following property:

Proposition 24. Given an �-layered automaton A and denoting A′ = Topk(A):
Topk(Succ(A′, 〈pi, qi〉i∈[m])) = Topk(Succ(A, 〈pi, qi〉i∈[m])).

We use functions Succ and Topk to define the notion of thread automaton. The thread automaton of a thread T h
M , denoted

Ah,M , is designed to accept all and only the stack contents w of T h
M that can occur in a k-scoped multiple context run of

T h
M . For this, Ah,M explores backwards the contexts of T h

M that can occur in such a run and simulates the transitions of
layered automata connected through Succ (which according to Theorem 22 guarantees that w can be reached on a multiple
context run of T h

M). By exploiting Propositions 19 and 24, this can be done with layered automata with at most k layers
using function Topk to keep the number of layers within the bound k.

The states of Ah,M are of the form (d, p, A, q, q′) where d ∈ [k], A is an �-layered stack automaton with � ≤ k, and p, q,
and q′ are control states of M . Each state (d, p, A, q, q′) denotes contexts starting from q and ending at q′ , moreover:

• A captures the top portions of the stack that are reachable by such contexts;
• p is the current control state, and if d = 1, it is updated by simulating A on the top-layer copy of p, otherwise it stays

unchanged;

S. La Torre et al. / Information and Computation 275 (2020) 104588 19
• d is used to guide the simulation through the chain of Succ-connected layered automata; in particular, if d > 1, Ah,M
just moves to a state corresponding to a previous context (recall that contexts are explored backwards) updating the
A component via the composed function Topk ◦ Succ and decreasing d by 1; as soon as d = 1 holds, Ah,M simulates A
starting from the top-layer copy of p until a transition that crosses the top layer is taken; when this occurs, denoting
with � the top layer of A and with �′ the layer of the target of the crossing transition, d is then updated to � − �′ + 1,
thus enforcing that the d component will evaluate 1 again when a context corresponding to layer �′ of A is reached.

Formally, the thread automaton Ah,M = (Q h,M , Q 0
h,M , �h,
h,M , Q F

h,M) is such that:

1. the set of states Q h,M contains all the tuples of the form (d, p, A, q, q′) where d ∈ [0, k], A is an �-layered stack au-
tomaton on alphabet �h with � ∈ [k], and p, q, q′ ∈ Q are such that the copies of q and q′ in the top layer of A are not
isolated (and thus connected to qF);

2. the set of initial states Q 0
h,M ⊆ Q h,M is the set of all the states of the form (1, p, A, q, q′) where the top-layer copy of p

in A is not isolated and p = q′;
3. the set of final states Q F

h,M ⊆ Q h,M is the set of all the states of the form (1, p, A, q, q′) where A is 1-layered, p = q

and A = Succ(Ah
ε, p, qF);

4.
h,M ⊆ Q h,M × (�h ∪{ε}) × Q h,M is the set of all the transitions (s1, τ , s2) where s1 /∈ Q F
h,M (i.e., there are no transitions

from a final state) and denoting si = (di, pi, Ai, qi, q′
i) for i ∈ [2], one of the following cases applies (in the following

description, if a component of s2 is not mentioned then it is equal to the same component of s1):

[simulation] d1 = 1 and (〈p1, �〉, τ , 〈p2, �〉) is a transition of A1 where � is the top-layer index of A1;
[simulation end] d1 = 1, there is a transition (〈p1, �1〉, τ , 〈p2, �2〉) of A1 where �2 < �1 and �1 is the top-layer index

of A1 (i.e., the A1 transition crosses the top layer), and d2 = �1 − �2 + 1 (i.e., there is no further stack content
to parse in this context and in the next �1 − �2 − 1 contexts that will be processed);

[context update] τ = ε, d1 > 1, A1 = Topk(Succ(A2, q1, q′
2)) and d2 = d1 − 1 (i.e., there is no stack content to read from

this context thus the automaton just moves to a previous context).

The following lemma states a property on the structure of the accepting runs of Ah,M .

Lemma 25. Any accepting run ρ of Ah,M can be decomposed as

ρs
1,ρ

e
1,ρc

1, . . . ρ
s
�−1,ρ

e
�−1,ρ

c
�−1,ρ

s
�

where each ρs
i is a possibly empty sequence of simulation transitions, each ρe

i is a single simulation-end transition and each ρc
i is a

non-empty sequence of context-update transitions.

Proof. We observe that each run starts from a state of the form (1, p, A, q, q′) and thus only simulation and simulation-end
transitions can be taken. As soon as a simulation-end transition is taken, Ah,M enters a state with d ≥ 2 as first component
and thus the next transition can only be a context-update one. Since each context-update transition decreases by 1 the
value of this state component, after d − 1 context-update transitions a state with 1 in its first component is entered and
thus only simulation and simulation-end transitions are possible. Finally, since a final state has 1 as first component, an
accepting run must end either with a context-update or a simulation transition (recall ρs

� is possibly empty). �
We observe that along a run of Ah,M the layered automaton in the states can only change by taking context-update

transitions. Let ρs
1, ρ

e
1, ρc

1, . . . ρ
s
�−1, ρ

e
�−1, ρ

c
�−1, ρ

s
� be a decomposition of a run ρ as above. We denote with lsa(ρ) the

sequence A1 . . . Am of the layered stack automata occurring in ρc
1, . . . ρc

�−1.
The following theorem states the wished property for tread automata.

Theorem 26.

1. For a layered stack automaton A = Succ(Ah
ε, 〈pi, qi〉i∈[m]), if w ∈ L(A, q) then w is accepted by Ah,M starting from

(1, q, Topk(A), pm, q).
2. If ρ is an accepting run of Ah,M over w starting from (1, q, Am, p, q) and with lsa(ρ) = Am . . . A1 , then there is a sequence

〈pi, qi〉i∈[m] such that w ∈L(A′
m, q) and A j = Topk(A′

j) for j ∈ [m], where A′
j = Succ(Ah

ε, 〈pi, qi〉i∈[j]) for j ∈ [m].

Proof. We start showing part 1. Denoting A = Succ(Ah
ε, 〈pi, qi〉i∈[m]) assume w ∈ L(A, q).

We recall that Sat adds only transitions from a top layer state to states of the form 〈p, �′〉 where p ∈ Q , �′ > 0 and
�′ ∈ [� − k + 1, �]. Moreover, Succ(Ah

ε, 〈pi, qi〉i∈[m]) is defined provided that q1 = qF . Thus, each run of A accepting w from
〈q, m〉 must be of the form

20 S. La Torre et al. / Information and Computation 275 (2020) 104588
〈p′
1,m1〉 w1� 〈q′

1,m1〉 ε→ 〈p′
2,m2〉 w2� . . . 〈p′

d,md〉 wd� 〈q′
d,md〉 ε→ qF

where w = w1 w2 . . . wd , m = m1, p′
1 = q, md = 1, q′

d = p1, and 0 < mi − mi+1 < k for i ∈ [d − 1].
For j ∈ [m], denote A j = Succ(Ah

ε, 〈pi, qi〉i∈[j]) and A′
j = Topk(A j).

Moreover, denote qF = 〈p′
d+1, 0〉, md+1 = 0, and for j ∈ [d], ρ j = 〈p′

j, m j〉 w j� 〈q′
j, m j〉 ε→ 〈p′

j+1, m j+1〉. For j ∈ [d], we thus

get from Proposition 19 that ρ j is also a run of Am j and hence by the definition of Topk , ρ ′
j = 〈p′

j, k j〉 w j� 〈q′
j, k j〉 ε→ 〈p′

j+1, � j〉
is a run of A′

m j
where � j = m j+1 − m j + k j and k j ≤ k is the top layer index of A′

m j
.

Using the above runs ρ ′
j we can construct a corresponding run π of Ah,M over w as the composition of runs π1, . . . , πd

defined as follows.
The starting state of π1 is s1 = (1, p′

1, A
′
m1

, pm1 , p′
1), that is, we wish to simulate A′

m1
starting from the top-layer copy of

p′
1 and A′

m1
= Topk(Am1) where Am1 = Succ(Am1−1, 〈pm1 , qm1 〉) (recall m = m1).

For each j ∈ [d − 1], we construct π j as a run of the form

s j
w j�Ah,M s′

j
ε→Ah,M s′′

j
ε→Ah,M . . .

ε→Ah,M s j+1.

The first portion s j
w j�Ah,M s′

j is obtained by simulation transitions that correspond to the transitions of the run 〈p′
j, k j〉 w j�A′

m j

〈q′
j, k j〉. In particular, we let s j = (1, p′

j, A
′
m j

, pm j , qm j+1) and s′
j = (1, q′

j, A
′
m j

, pm j , qm j+1).

The next transition s′
j

ε→Ah,M s′′
j is a simulation-end transition that captures transition 〈q′

j, k j〉 ε→A′
m j

〈p′
j+1, � j〉. Thus, by

definition s′′
j is of the form (k j − � j + 1, p′

j+1, A
′
m j

, pm j , qm j+1).

For the final part s′′
j

ε→Ah,M . . .
ε→Ah,M s j+1 we use context-update transitions. In particular, from the definitions, we have

that k j − � j = m j − m j+1. Thus, from Ai+1 = Succ(Ai, pi+1, qi+1) for i ∈ [m − 1] and Proposition 24, we get that Ah,M has
context-update transitions to form the following run (where we have denoted r j = m j − m j+1):

s′′
j = (r j + 1, p′

j+1, A′
m j

, pm j ,qm j+1)
ε→ (r j, p′

j+1, A′
m j−1, pm j−1,qm j) . . .

ε→ (1, p′
j+1, A′

m j+1
, pm j+1 ,qm j+1+1) = s j+1.

We construct the remaining run πd by simply using simulation transitions. From the construction of π1, . . . , πd−1, πd

must start from sd = (1, p′
d, A

′
md

, pmd , qmd+1). We recall that md = 1, thus sd = (1, p′
d, A

′
1, p1, q2). From 〈p′

d, kd〉 wd�A′
1
〈q′

d, kd〉,

we get (1, p′
d, A

′
1, p1, q2)

wd�Ah,M (1, q′
d, A

′
1, p1, q2). Since q′

d = p1, A′
1 is 1-layered and A′

1 = Succ(Ah
ε, p1, qF), we get that

(1, q′
d, A

′
1, p1, q2) is final.

We thus have defined a run π of Ah,M over w = w1 . . . wd that starts from s1 = (1, p′
1, A

′
m1

, pm1 , p′
1) and ends at a final

state. We recall that p′
1 = q, m1 = m, Am = A and A′

m = Topk(Am). Thus indeed s1 = (1, q, Topk(A), pm, q) and we are done
with this part of the proof.

Now we show part 2 of the theorem. For this suppose that w is accepted by Ah,M and let ρ = sm
τm−→Ah,M . . .

τ1−→Ah,M s0
be an accepting run over w where si = (di, p′

i, Ai, pi, qi) for i ∈ [m].
Let ρs

1, ρ
e
1, ρc

1, . . . ρ
s
d−1, ρ

e
d−1, ρ

c
d−1, ρ

s
d be a decomposition of ρ as in Lemma 25, and let w = w1 . . . wd the corresponding

decomposition of w .
We have the following facts:

1. sm is an initial state, thus dm = 1 and p′
m = qm must hold;

2. s0 is a final state, thus d0 = 1 and A0 = Succ(Ah
ε, p0, qF) must hold;

3. for j ∈ [d], ρs
j is of the form sm j

w j�Ah,M sm′
j

where for i ∈ [m′
j, m j]: di = 1, Ai = Am j , pi = pm j and qi = qm j (i.e., the

only component that is updated in the simulation transitions is p′
i); note that m1 = m and m′

d = 0;

4. for j ∈ [d − 1], ρe
j is of the form sm′

j

ε→Ah,M sm′
j−1, that is,

(1, p′
m′

j
, Am j , pm j ,qm j)

ε→Ah,M (k j + 1, p̄ j, Am j , pm j ,qm j)

where k j = �′
j − �′′

j > 0 and 〈p′
m′

j
, �′

j〉
ε→Am j

〈p̄ j, �′′
j 〉;

5. for j ∈ [d − 1], ρe
j is of the form sm′

j−1
ε�Ah,M sm j+1 , that is,

(k j + 1, p̄ j, Am j , pm j ,qm j)
ε→Ah,M (k j, p̄ j, Am′

j−2, pm′
j−2,qm′

j−2) . . .

ε→Ah,M (1, p̄ j, Am j+1 , pm j+1 ,qm j+1)

where for i ∈ [m j+1, m′ − 2], Ai+1 = Topk(Succ(Ai, pi+1, qi)).
j

S. La Torre et al. / Information and Computation 275 (2020) 104588 21
We denote Bd = A0 and for j ∈ [d − 1], B j = Succ(B j+1, 〈pi+1, qi〉i∈[m j+1,m′
j−2]). By an inductive application of Proposi-

tion 24 we can show that Am j = Topk(B j) for j ∈ [d]. Thus to conclude the proof we only need to show that w ∈ L(B1, p′
m)

(recall m = m1). We prove this by induction showing that w j . . . wd ∈L(B j, p′
m j

) for j ∈ [d].
From fact 3 above, we have smd

wd�Ah,M s0 and since Bd = A0 = Succ(Ah
ε, p0, qF), we get that the base case wd ∈

L(Bd, qmd) clearly holds.
Suppose now that w j+1 . . . wd ∈ L(B j+1, p′

m j+1
) holds. From Corollary 20, we get w j+1 . . . wd ∈ L(B j, 〈p′

m j+1
, �〉, qF)

where � is the top-layer index of B j+1. Moreover, again from fact 3 above sm j

w j�Ah,M sm′
j

and from fact 4 sm′
j

ε→Ah,M sm′
j−1

(recall that p′
m′

j−1 = p′
m j+1

). Thus, from the definition of Ah,M , we get 〈p′
m j

, �′
j〉

w j�Am j
〈p′

m′
j
, �′

j〉
ε→Am j

〈p′
m j+1

, �′′
j 〉 where

�′
j is the top layer index of Am j . Also, from fact 5 and the definition of B j , we get k j = �′

j − �′′
j = m′

j − 1 − m j+1. From
Proposition 18, the top layer index of B j is �′ = � + m′

j − 1 − m j+1 (recall that � denotes the top layer index of B j+1),
and thus k j = �′ − �. By the inductive application of Proposition 24 mentioned above, we have Am j = Topk(B j), and thus

〈p′
m j

, �′〉 w j�B j 〈p′
m′

j
, �′〉 ε→B j 〈p′

m j+1
, �〉. Therefore by applying the inductive hypothesis we get w j . . . wd ∈ L(B j, p′

m j
) that

concludes the proof. �
6.3. Solving configuration reachability

By Theorem 26 and Corollary 23, each run of a thread automaton corresponds to a thread interface (that is explored
backwards along the run). Thus to solve the configuration reachability problem we can construct a finite automaton R
that composes the thread automata, one for each thread of the Mpds, synchronizing them on context-switches. This would
clearly achieve the effect of stitching together the corresponding thread interfaces and thus by Theorem 13, it would suffice
to witness the existence of a corresponding k-scoped run of the Mpds.

Concerning to the technical construction, automaton R operates essentially in two modes: a simulation mode and a
context-switching mode. In the simulation mode, R executes for one of the thread automata a sequence of simulation tran-
sitions followed by a simulation-end transition, and then switches to the context-switching mode. In the context-switching
mode, it attempts to stitch (backwards) to the computation of M simulated so far, the context shown in the current state
of one of the thread automata and if it succeeds it updates the state of M reached so far and the state of the thread au-
tomaton by taking a context-update transition (that will give the next context to use for this thread). From this mode, R
switches back to the simulation mode if one of the thread automata can execute either a simulation or a simulation-end
transition. To implement these behaviors, we use states of the form (h, q, ̄q1, . . . , ̄qn) where h denotes the mode, q is the
state of M (backwards) reached so far, and q̄1, . . . , ̄qn are the current states of the thread automata. We use h = 0 to denote
the context-switching mode, and h ∈ [n] to denote the thread automaton currently executed in the simulation mode. The
acceptance condition requires that we have reached an initial state of M and all the thread automata have reached a final
state.

Formally, denoting Ah,M = (Q h,M , Q 0
h,M , �h,
h,M , Q F

h,M) the thread automaton for thread T h
M , we define R as the finite

automaton (S, I, �,
, F) where:

• the set of states S is [0, n] × Q × ∏
i∈[n] Q i,M ;

• the set of initial states I is the set of all tuples of the form (h, q, ̄q1, . . . , ̄qn) where h ∈ [n], q̄i = (1, pi, Ai, qi, pi) ∈ Q 0
i,M

for i ∈ [n] and ph = q;
• the set of final states F is the set of all states of the form (h, q, ̄q1, . . . , ̄qn) where q ∈ Q I (i.e., q is an initial state of M)

and q̄i ∈ Q F
i,M for i ∈ [n];

• for i ∈ [2], denote si = (hi, qi, ̄qi,1, . . . , ̄qi,n) where for j ∈ [n], q̄i, j = (di, j, pi, j, Ai, j, qi, j, q′
i, j), the set of transition
 is

the set of the tuples (s1, τ , s2) such that s1 /∈ F and one of the following cases applies (in the following description, if
a component of s2 is not mentioned then it is equal to the same component of s1):

[simulation mode] h1 > 0 and the following holds:

– d1,h1 = 1 and q̄1,h1

τ→Ah,M q̄2,h1 (i.e., this is either a simulation or simulation-end transition of Ah1,M);
– if d2,h1 > 1 then h2 = 0 (change to context-switching mode);

[context-switching mode] h1 = 0, τ = ε and the following holds:
– if there exists h ∈ [n] such that d1,h = 1 then h2 = h (change to simulation mode),
– otherwise (keep staying in context-switching mode), there exists a h ∈ [n] such that:

∗ d1,h > 1 and q̄1,h
τ→Ah,M q̄2,h (i.e., this is a context-update transition of Ah,M);

∗ q′
1,h = q1 (i.e., the current context of Ah,M ends with the state of M reached so far and thus we can stitch

it to the current computation);
∗ q2 = q1,h (i.e., the state of M reached so far is updated to the initial state of the current context of Ah,M);

22 S. La Torre et al. / Information and Computation 275 (2020) 104588
Given two words v, w ∈
∗ , with v � w we denote the shuffle product of v and w , that is, the set of words
v1 w1 . . . vm wm where = v1 . . . vm , w = w1 . . . wm and vi, wi ∈
∗ . With �i∈[n]wi we denote its generalization to n words
w1, . . . , wn . These operators generalize to languages as usual and we omit it here. We get the following theorem that relates
k-scoped runs to R runs.

Theorem 27. Given q ∈ Q and wi ∈ �∗ for i ∈ [n], the following statements are equivalent:

1. There is a k-scoped run of the form 〈 〈q0, ε, . . . , ε〉 〉 �M 〈 〈q, w1, . . . , wn〉 〉 with q0 ∈ Q I .
2. There is a run of R over a word w ′ ∈ �i∈[n]wi that starts from an initial state of the form (h, q, ̄q1, . . . , ̄qn) and ends at a final

state of the form (h′, q0, ̄q′
1, . . . , ̄q

′
n).

Proof. We start showing the implication from 1 to 2. Consider a k-scoped run ρ of the form 〈 〈q0, ε, . . . , ε〉 〉 �M

〈 〈q, w1, . . . , wn〉 〉. By taking a splitting of ρ into maximal contexts, we can define n k-scoped multiple context runs, say
ρ1, . . . , ρn , one for each thread. For i ∈ [n], let ρi be formed of ρi,1, . . . , ρi,mi where ρi, j = 〈 〈pi, j, wi, j〉 〉 � j

M 〈 〈qi, j+1, wi, j+1〉 〉
for j ∈ [mi]. Clearly, for i ∈ [n], wi,mi+1 = wi must hold.

Denoting Ai = Succ(Ai
ε, 〈pi, j, qi, j〉 j∈[mi]), from Theorem 22 we get that wi ∈ L(Ai, qi,mi+1) and thus by part 1 of Theo-

rem 26, wi is accepted by Ai,M from a state of the form (1, qi,mi+1, Topk(A), pi,mi , qi,mi+1).
We can construct an accepting run of R over an interleaving of the words w1, . . . , wn that reflects the reversed order

of the considered splitting of ρ . The run starts from a state of the form (h, q, ̄q1, . . . , ̄qn) where each q̄i corresponds to the
context ρi,mi and h ∈ [n] is such that the context of q̄h ends with qh,mh+1. Then, for each i ∈ [n], R simulates the transitions
of an accepting run of Ai,M over wi . For this, it alternates between the thread automata according to the reversed order of
the considered splitting of ρ . As soon as the first maximal context of ρ is processed, R updates the state of M reached so
far with the starting state q0 of ρ , and since all the thread automata have reached their respective final states, this state is
also final and we are done with the proof of the implication from 1 to 2.

For the implication from 2 to 1, consider a run ρ of R over a word w ′ ∈ �i∈[n]wi that starts from an initial state of the
form (h, q, ̄q1, . . . , ̄qn) and ends at a final state of the form (h′, q0, ̄q′

1, . . . , ̄q
′
n). Recall that the stack alphabets �i for i ∈ [n]

are disjoint. Thus, from ρ we can uniquely define the runs ρi of Ai,M over wi for i ∈ [n]. From the construction of R, we
have that each ρi is accepting, starts from q̄i and ends at q̄′

i .
Denoting q̄i = (1, q, A, p, q) and lsa(ρi) = Ai,mi . . . Ai,1, from part 2 of Theorem 26 there is a sequence 〈pi, j, qi, j〉 j∈[mi]

such that A′
i, j = Succ(Ai

ε, 〈pi, j, qi, j〉i∈[j]) and Ai, j = Topk(A′
i, j) for j ∈ [mi], and wi ∈L(A′

i,mi
, q).

Thus, by Theorem 22, there is a k-scoped multiple context run ρi,1, . . . , ρi,mi of T i
M such that ρi, j = 〈 〈pi, j, wi, j〉 〉 �i

M〈 〈qi, j+1, wi, j+1〉 〉 for j ∈ [mi] and wi,mi+1 = wi .
To conclude the proof, we observe that we can stitch together the contexts from the k-scoped multiple context runs

according to the (reversed) sequence of contexts explored in the run ρ while in the context-switching mode thus obtaining
a k-scoped accepting run of M starting from q0. Since (h, q, ̄q1, . . . , ̄qn) is initial for R we get q0 ∈ Q I and we are done. �
6.3.1. Computational complexity of configuration reachability of SMpds

Fix an SMpds M = (k, Q , Q I , ̃�n, δ) and a set of configurations T = P ×L(B1) × . . . ×L(Bn), where P ⊆ Q .
By Theorem 27, the reachability problem for SMpds can be reduced to checking the emptiness of

⋃
q∈P (L(R, q) ∩ L)

where L =L(B1) � . . .�L(Bn). Denoting with Ai,M × Bi the standard cross product construction synchronized on the input
symbols (ε transitions can be taken asynchronously), the construction of R can be modified such that in the simulation
mode it tracks the behaviors of Ai,M × Bi instead of just the thread automaton Ai,M . Denote with RT the resulting finite
state automaton. We observe that in RT , the simulation of each Bi starts from the initial states, and then the Bi -component
gets updated only in the simulation mode in pair with the couped layered stack automaton. We omit further details on the
construction of RT .

We recall that the number of states of each Ah,M is at most (k + 1)|Q |3α where α = O (2(k|Q |)2
) is the number of

different �-layered stack automata with � ≤ k. Thus the number of states of RT is at most (n + 1)|Q |(k + 1)n|Q |3nαnβn

where β is the maximum over the number of states of B1, . . . , Bn . Thus, the number of states of RT is exponential in n,
|Q | and k. Since we can explore on-the-fly the state space of RT , we can check the emptiness of RT in polynomial space,
and in time exponential in n, |Q |2 and k2. Since each instance of the location reachability is also an instance of the general
reachability problem, by Theorems 15 and 27 we get:

Theorem 28. The reachability problem for SMpds is Pspace-complete, and hardness can be shown both with respect to the number of
stacks and the bound k.

7. Conclusion

We have introduced a decidable restriction of multistack pushdown systems that allows for unboundedly many context
switches. Compared to the bounded context-switching analysis, by bounding the scope of the matching relations of push

S. La Torre et al. / Information and Computation 275 (2020) 104588 23
and pop transitions we can explore a (significantly) larger number of computations of a given Mpds and possibly with a
smaller value of the bounding parameter. For example, a run that alternates pushes of two stacks is 1-scoped while it can
have any number of contexts. In general, for systems where the procedure calls do not need to hang for many contexts
before returning, the bounded scope analysis covers the behavior explored with the context bounded analysis with smaller
values of the bound k, which is a critical parameter for the complexity of the decision algorithms (time is exponential in k
in both settings).

The main limitation introduced by restricting to bounded scope computations is to bound the amount of information that
can flow out of a stack configuration into the other stacks. This makes this notion in some sense orthogonal to bounding
the number of phases and allowing pop transitions only from the least indexed non-empty stack. In fact, in bounded phase
computations we can transfer an unbounded amount of information from a stack to the others but only for a bounded
number of times. In the ordered computations instead, unbounded information can only be transferred from the least
indexed non-empty stack to stacks of higher index.

We have shown detailed comparisons with the other restrictions introduced in the literature for the analysis of Mpds, and
studied the computational complexity of the location and configuration reachability problems. In particular, the problems
turn out to be both Pspace-complete and our decision procedures are exponential in the number of control states, the
number of stacks and the bound on the scope.

We remark that the original notion of bounded scope runs introduced in [9] was based on the notion of round. We
recall that for an n-stack Mpds M , a round of M is the concatenation of n contexts where stack h is the active stack of
the h-th concatenated context. Thus, a run is k-round scoped2 if the pop transitions are allowed only when the symbol at
the top of the stack was pushed within the last k rounds. It is simple to see that the k-scoped restriction used here is a
relaxation of the k-round scoped one. In fact, in k-round scoped runs the number of contexts occurring between a push and
its matching pop is always bounded while in k-scoped runs it can be unbounded. Moreover, each k-round scoped run is
clearly also a k-scoped run. As an example, consider the Mpds M2 of Example 2. As observed in Example 2 all the runs of
M2 are all 2-scoped. Instead, for each bound k > 0, there are runs of M2 that are not k-round scoped. In fact, configuration
〈 〈q4, ε, ε, ck〉 〉 can be reached only by allowing to pop a in round k + 1.

As future research, we think that it would be interesting to experiment the effectiveness of the verification methodology
based on our approach, by implementing our algorithms in a verification tool and compare them with competing tools. If
on one side the considered reachability problem has a theoretically higher complexity compared to the case of bounded
context-switching, on the other side smaller values of the bound on the number of context switches are likely to suffice for
several systems.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank the anonymous reviewers for their useful and helpful comments on our manuscript.
This work was partially supported by GNCS 2019 grant (project “Metodi formali per tecniche di verifica combinata”), and
FARB grants ORSA179492 and ORSA188702.

References

[1] S. Qadeer, J. Rehof, Context-bounded model checking of concurrent software, in: N. Halbwachs, L.D. Zuck (Eds.), Tools and Algorithms for the Construc-
tion and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings, in: Lecture Notes in Computer Science, Springer, 2005, pp. 93–107.

[2] M. Musuvathi, S. Qadeer, Iterative context bounding for systematic testing of multithreaded programs, in: J. Ferrante, K.S. McKinley (Eds.), Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, ACM, 2007,
pp. 446–455.

[3] A. Lal, T. Touili, N. Kidd, T.W. Reps, Interprocedural analysis of concurrent programs under a context bound, in: Ramakrishnan and Rehof [46],
pp. 282–298, https://doi .org /10 .1007 /978 -3 -540 -78800 -3 _20.

[4] S. La Torre, P. Madhusudan, G. Parlato, Model-checking parameterized concurrent programs using linear interfaces, in: Touili et al. [47], pp. 629–644,
https://doi .org /10 .1007 /978 -3 -642 -14295 -6 _54.

[5] S. Schwoon, Model-checking pushdown systems, Ph.D. thesis, Technische Universität München, 2002.
[6] S. La Torre, P. Madhusudan, G. Parlato, A robust class of context-sensitive languages, in: 22nd IEEE Symposium on Logic in Computer Science (LICS

2007), 10-12 July 2007, Wroclaw, Poland, Proceedings, IEEE Computer Society, 2007, pp. 161–170.
[7] L. Breveglieri, A. Cherubini, C. Citrini, S. Crespi-Reghizzi, Multi-push-down languages and grammars, Int. J. Found. Comput. Sci. 7 (3) (1996) 253–292,

https://doi .org /10 .1142 /S0129054196000191.
[8] S. La Torre, M. Napoli, G. Parlato, A unifying approach for multistack pushdown automata, in: E. Csuhaj-Varjú, M. Dietzfelbinger, Z. Ésik (Eds.), Mathe-

matical Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings,
Part i, in: Lecture Notes in Computer Science, vol. 8634, Springer, 2014, pp. 377–389.

2 Note that in [9] this is referred to as k-scoped.

http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2312AB9E99D813219C04367A56B1553Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2312AB9E99D813219C04367A56B1553Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2312AB9E99D813219C04367A56B1553Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibE495A59C603EEA1406F0DDC6EADF5687s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibE495A59C603EEA1406F0DDC6EADF5687s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibE495A59C603EEA1406F0DDC6EADF5687s1
https://doi.org/10.1007/978-3-540-78800-3_20
https://doi.org/10.1007/978-3-642-14295-6_54
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib05C370A103845C793A279AE27729277Fs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib6EFC57DDE9D5BCA02F62932FEF90906As1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib6EFC57DDE9D5BCA02F62932FEF90906As1
https://doi.org/10.1142/S0129054196000191
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2DC4C54432CEFDE45D2A7E906B4D22A4s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2DC4C54432CEFDE45D2A7E906B4D22A4s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib2DC4C54432CEFDE45D2A7E906B4D22A4s1

24 S. La Torre et al. / Information and Computation 275 (2020) 104588
[9] S. La Torre, M. Napoli, Reachability of multistack pushdown systems with scope-bounded matching relations, in: J. Katoen, B. König (Eds.), CONCUR
2011 - Concurrency Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings, in: Lecture Notes in
Computer Science, vol. 6901, Springer, 2011, pp. 203–218.

[10] S. La Torre, M. Napoli, A temporal logic for multi-threaded programs, in: J.C.M. Baeten, T. Ball, F.S. de Boer (Eds.), Theoretical Computer Science - 7th
IFIP TC 1/WG 2.2 International Conference, TCS 2012, Amsterdam, The Netherlands, September 26-28, 2012. Proceedings, in: Lecture Notes in Computer
Science, vol. 7604, Springer, 2012, pp. 225–239.

[11] S. La Torre, G. Parlato, Scope-bounded multistack pushdown systems: fixed-point, sequentialization, and tree-width, in: D. D’Souza, T. Kavitha, J. Rad-
hakrishnan (Eds.), IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2012, December 15-17,
2012, Hyderabad, India, in: LIPIcs, vol. 18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 173–184.

[12] S. La Torre, P. Madhusudan, G. Parlato, Analyzing recursive programs using a fixed-point calculus, in: M. Hind, A. Diwan (Eds.), Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009, ACM, 2009,
pp. 211–222.

[13] S. La Torre, M. Napoli, G. Parlato, Scope-bounded pushdown languages, Int. J. Found. Comput. Sci. 27 (2) (2016) 215–234, https://doi .org /10 .1142 /
S0129054116400074.

[14] A. Cyriac, P. Gastin, K.N. Kumar, MSO decidability of multi-pushdown systems via split-width, in: M. Koutny, I. Ulidowski (Eds.), CONCUR 2012 -
Concurrency Theory - 23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, in: Lecture Notes in
Computer Science, vol. 7454, Springer, 2012, pp. 547–561.

[15] M.F. Atig, A. Bouajjani, K.N. Kumar, P. Saivasan, Linear-time model-checking for multithreaded programs under scope-bounding, in: S. Chakraborty,
M. Mukund (Eds.), Automated Technology for Verification and Analysis - 10th International Symposium, ATVA 2012, Thiruvananthapuram, India, Octo-
ber 3-6, 2012. Proceedings, in: Lecture Notes in Computer Science, Springer, 2012, pp. 152–166.

[16] R. Alur, K. Etessami, P. Madhusudan, A temporal logic of nested calls and returns, in: K. Jensen, A. Podelski (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings, in: Lecture Notes in Computer Science, vol. 2988, Springer,
2004, pp. 467–481.

[17] A. Lal, T.W. Reps, Reducing concurrent analysis under a context bound to sequential analysis, in: A. Gupta, S. Malik (Eds.), Computer Aided Verification,
20th International Conference, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, in: Lecture Notes in Computer Science, vol. 5123, Springer,
2008, pp. 37–51.

[18] D. Suwimonteerabuth, J. Esparza, S. Schwoon, Symbolic context-bounded analysis of multithreaded java programs, in: K. Havelund, R. Majumdar,
J. Palsberg (Eds.), Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12, 2008, Proceedings, in: Lecture
Notes in Computer Science, vol. 5156, Springer, 2008, pp. 270–287.

[19] S.K. Lahiri, S. Qadeer, Z. Rakamaric, Static and precise detection of concurrency errors in systems code using SMT solvers, in: Bouajjani and Maler [48],
pp. 509–524, https://doi .org /10 .1007 /978 -3 -642 -02658 -4 _38.

[20] J. Alglave, D. Kroening, M. Tautschnig, Partial orders for efficient bounded model checking of concurrent software, in: N. Sharygina, H. Veith (Eds.),
Computer Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, in: Lecture Notes in
Computer Science, vol. 8044, Springer, 2013, pp. 141–157.

[21] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, G. Parlato, Bounded model checking of multi-threaded C programs via lazy sequentialization, in: A. Biere,
R. Bloem (Eds.), Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, in: Lecture Notes in Computer Science, vol. 8559, Springer, 2014, pp. 585–602.

[22] E. Tomasco, O. Inverso, B. Fischer, S. La Torre, G. Parlato, Verifying concurrent programs by memory unwinding, in: C. Baier, C. Tinelli (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, in: Lecture Notes in Computer Science, vol. 9035, Springer,
2015, pp. 551–565.

[23] S. La Torre, P. Madhusudan, G. Parlato, Reducing context-bounded concurrent reachability to sequential reachability, in: Bouajjani and Maler [48],
pp. 477–492, https://doi .org /10 .1007 /978 -3 -642 -02658 -4 _36.

[24] S. La Torre, P. Madhusudan, G. Parlato, Sequentializing parameterized programs, in: S.S. Bauer, J. Raclet (Eds.), Proceedings Fourth Workshop on Foun-
dations of Interface Technologies, FIT 2012, Tallinn, Estonia, 25th March 2012, in: EPTCS, vol. 87, 2012, pp. 34–47.

[25] M.F. Atig, A. Bouajjani, S. Qadeer, Context-bounded analysis for concurrent programs with dynamic creation of threads, Logical Methods in Computer
Science 7 (4), https://doi .org /10 .2168 /LMCS -7(4 :4)2011.

[26] M. Emmi, S. Qadeer, Z. Rakamaric, Delay-bounded scheduling, in: Ball and Sagiv [49], pp. 411–422, https://doi .org /10 .1145 /1926385 .1926432.
[27] A. Bouajjani, M. Emmi, G. Parlato, On sequentializing concurrent programs, in: E. Yahav (Ed.), Static Analysis - 18th International Symposium, SAS 2011,

Venice, Italy, September 14-16, 2011. Proceedings, in: Lecture Notes in Computer Science, vol. 6887, Springer, 2011, pp. 129–145.
[28] A. Bouajjani, S. Fratani, S. Qadeer, Context-bounded analysis of multithreaded programs with dynamic linked structures, in: W. Damm, H. Hermanns

(Eds.), Computer Aided Verification, 19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, in: Lecture Notes in Com-
puter Science, vol. 4590, Springer, 2007, pp. 207–220.

[29] S. La Torre, P. Madhusudan, G. Parlato, Context-bounded analysis of concurrent queue systems, in: Ramakrishnan and Rehof [46], pp. 299–314, https://
doi .org /10 .1007 /978 -3 -540 -78800 -3 _21.

[30] P. Chini, J. Kolberg, A. Krebs, R. Meyer, P. Saivasan, On the complexity of bounded context switching, in: K. Pruhs, C. Sohler (Eds.), 25th Annual European
Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, in: LIPIcs, vol. 87, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
pp. 27:1–27:15.

[31] S. La Torre, P. Madhusudan, G. Parlato, An infinite automaton characterization of double exponential time, in: M. Kaminski, S. Martini (Eds.), Computer
Science Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19, 2008. Proceedings, in:
Lecture Notes in Computer Science, vol. 5213, Springer, 2008, pp. 33–48.

[32] A. Seth, Global reachability in bounded phase multi-stack pushdown systems, in: Touili et al. [47], pp. 615–628, https://doi .org /10 .1007 /978 -3 -642 -
14295 -6 _53.

[33] B. Bollig, D. Kuske, R. Mennicke, The complexity of model checking multi-stack systems, in: 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2013, New Orleans, LA, USA, June 25–28, 2013, IEEE Computer Society, 2013, pp. 163–172.

[34] K. Bansal, S. Demri, Model-checking bounded multi-pushdown systems, in: A.A. Bulatov, A.M. Shur (Eds.), Computer Science - Theory and Applications -
8th International Computer Science Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings, in: Lecture Notes in Computer
Science, vol. 7913, Springer, 2013, pp. 405–417.

[35] B. Bollig, C. Aiswarya, P. Gastin, M. Zeitoun, Temporal logics for concurrent recursive programs: satisfiability and model checking, J. Appl. Log. 12 (4)
(2014) 395–416, https://doi .org /10 .1016 /j .jal .2014 .05 .001.

[36] B. Bollig, On the expressive power of 2-stack visibly pushdown automata, Log. Methods Comput. Sci. 4 (4), https://doi .org /10 .2168 /LMCS -4(4 :16)2008.
[37] D. Carotenuto, A. Murano, A. Peron, 2-visibly pushdown automata, in: T. Harju, J. Karhumäki, A. Lepistö (Eds.), Developments in Language Theory, 11th

International Conference, DLT 2007, Turku, Finland, July 3-6, 2007, Proceedings, in: Lecture Notes in Computer Science, Springer, 2007, pp. 132–144.

http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF229699C873B575104D3B119ED897DFFs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF229699C873B575104D3B119ED897DFFs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF229699C873B575104D3B119ED897DFFs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11C2EB65D365A56CEB1C53C9B5BE207Fs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11C2EB65D365A56CEB1C53C9B5BE207Fs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11C2EB65D365A56CEB1C53C9B5BE207Fs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib174A52A43F27EB738CE0E03B03C8E455s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib174A52A43F27EB738CE0E03B03C8E455s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib174A52A43F27EB738CE0E03B03C8E455s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibCB01B1CE5977B73578BEE6BE172E2612s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibCB01B1CE5977B73578BEE6BE172E2612s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibCB01B1CE5977B73578BEE6BE172E2612s1
https://doi.org/10.1142/S0129054116400074
https://doi.org/10.1142/S0129054116400074
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibDD67C3919F96E79F6F7EE6F385AFF0BAs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibDD67C3919F96E79F6F7EE6F385AFF0BAs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibDD67C3919F96E79F6F7EE6F385AFF0BAs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibBEF6BE32A486B7A0F484DDA73CBC5261s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibBEF6BE32A486B7A0F484DDA73CBC5261s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibBEF6BE32A486B7A0F484DDA73CBC5261s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib1E4D1D8E9A5C4437184EEFBF8885A3FDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib1E4D1D8E9A5C4437184EEFBF8885A3FDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib1E4D1D8E9A5C4437184EEFBF8885A3FDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib1E4D1D8E9A5C4437184EEFBF8885A3FDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib90C1E7A8B993276EB502DECA5ED5E5E8s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib90C1E7A8B993276EB502DECA5ED5E5E8s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib90C1E7A8B993276EB502DECA5ED5E5E8s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11CE6699239341854E0CCEF7A5BB41D3s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11CE6699239341854E0CCEF7A5BB41D3s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib11CE6699239341854E0CCEF7A5BB41D3s1
https://doi.org/10.1007/978-3-642-02658-4_38
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib69861E0DD5429678878EE86ADD31EEEDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib69861E0DD5429678878EE86ADD31EEEDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib69861E0DD5429678878EE86ADD31EEEDs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibD7F0A1512836AF495461D751470289FBs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibD7F0A1512836AF495461D751470289FBs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibD7F0A1512836AF495461D751470289FBs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29D11D0C6C5F0D8722091AEA9791693As1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29D11D0C6C5F0D8722091AEA9791693As1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29D11D0C6C5F0D8722091AEA9791693As1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29D11D0C6C5F0D8722091AEA9791693As1
https://doi.org/10.1007/978-3-642-02658-4_36
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib7D3F13C9131B5F07F59F66FB20F2A8A8s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib7D3F13C9131B5F07F59F66FB20F2A8A8s1
https://doi.org/10.2168/LMCS-7(4:4)2011
https://doi.org/10.1145/1926385.1926432
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib0DFF4C61D955CF5B1B0BC31A97E41193s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib0DFF4C61D955CF5B1B0BC31A97E41193s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibAC966A92BE02B37B0D77126D694BADB2s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibAC966A92BE02B37B0D77126D694BADB2s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibAC966A92BE02B37B0D77126D694BADB2s1
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26B5FC067171924CD6F8B96B84E81390s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26B5FC067171924CD6F8B96B84E81390s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26B5FC067171924CD6F8B96B84E81390s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib635C7FEF49E6F238955F644987124A2Es1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib635C7FEF49E6F238955F644987124A2Es1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib635C7FEF49E6F238955F644987124A2Es1
https://doi.org/10.1007/978-3-642-14295-6_53
https://doi.org/10.1007/978-3-642-14295-6_53
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibBBA7DBC6AD23CD1C5EA6DD530825B9B3s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibBBA7DBC6AD23CD1C5EA6DD530825B9B3s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF51B7D7D934B0317344CEA6EECDF25EAs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF51B7D7D934B0317344CEA6EECDF25EAs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibF51B7D7D934B0317344CEA6EECDF25EAs1
https://doi.org/10.1016/j.jal.2014.05.001
https://doi.org/10.2168/LMCS-4(4:16)2008
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibFCEDDB74D441DC24AE031232E69E03D0s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibFCEDDB74D441DC24AE031232E69E03D0s1

S. La Torre et al. / Information and Computation 275 (2020) 104588 25
[38] P.A. Abdulla, M.F. Atig, O. Rezine, J. Stenman, Budget-bounded model-checking pushdown systems, Form. Methods Syst. Des. 45 (2) (2014) 273–301,
https://doi .org /10 .1007 /s10703 -014 -0207 -y.

[39] P. Madhusudan, G. Parlato, X. Qiu, Decidable logics combining heap structures and data, in: Ball and Sagiv [49], pp. 611–622, https://doi .org /10 .1145 /
1926385 .1926455.

[40] M. Hague, Saturation of concurrent collapsible pushdown systems, in: A. Seth, N.K. Vishnoi (Eds.), IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India, in: LIPIcs, vol. 24, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2013, pp. 313–325.

[41] A. Seth, Games on multi-stack pushdown systems, in: S.N. Artëmov, A. Nerode (Eds.), Logical Foundations of Computer Science, International Sym-
posium, LFCS 2009, Deerfield Beach, FL, USA, January 3-6, 2009. Proceedings, in: Lecture Notes in Computer Science, vol. 5407, Springer, 2009,
pp. 395–408.

[42] R. Meyer, S. Muskalla, G. Zetzsche, Bounded context switching for valence systems, in: S. Schewe, L. Zhang (Eds.), 29th International Conference on
Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, in: LIPIcs, vol. 118, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,
pp. 12:1–12:18.

[43] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.
[44] M.F. Atig, K.N. Kumar, P. Saivasan, Adjacent ordered multi-pushdown systems, Int. J. Found. Comput. Sci. 25 (8) (2014) 1083–1096, https://doi .org /10 .

1142 /S0129054114400255.
[45] P.A. Abdulla, S. Aronis, M.F. Atig, B. Jonsson, C. Leonardsson, K. Sagonas, Stateless model checking for TSO and PSO, Acta Inform. 54 (8) (2017) 789–818,

https://doi .org /10 .1007 /s00236 -016 -0275 -0.
[46] C.R. Ramakrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
Lecture Notes in Computer Science, vol. 4963, Springer, 2008.

[47] T. Touili, B. Cook, P.B. Jackson (Eds.), Computer Aided Verification, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceed-
ings, Lecture Notes in Computer Science, vol. 6174, Springer, 2010.

[48] A. Bouajjani, O. Maler (Eds.), 21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, Lecture Notes in Computer
Science, vol. 5643, Springer, 2009.

[49] T. Ball, M. Sagiv (Eds.), Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX,
USA, January 26-28, 2011, ACM, 2011, http://dl .acm .org /citation .cfm ?id =1926385.

https://doi.org/10.1007/s10703-014-0207-y
https://doi.org/10.1145/1926385.1926455
https://doi.org/10.1145/1926385.1926455
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib0E40917F89416701A37F7B1DE1003231s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib0E40917F89416701A37F7B1DE1003231s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib0E40917F89416701A37F7B1DE1003231s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26CA02B4CC0767FFEEDA7D5A464EE3DCs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26CA02B4CC0767FFEEDA7D5A464EE3DCs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib26CA02B4CC0767FFEEDA7D5A464EE3DCs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29E07FEBB030C609F149CD54E902EA25s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29E07FEBB030C609F149CD54E902EA25s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib29E07FEBB030C609F149CD54E902EA25s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibD0A0AC44305ACC44F5EA165BCAAB62E6s1
https://doi.org/10.1142/S0129054114400255
https://doi.org/10.1142/S0129054114400255
https://doi.org/10.1007/s00236-016-0275-0
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib10AA921FBD99AF8FF3CD79F47DA1746Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib10AA921FBD99AF8FF3CD79F47DA1746Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib10AA921FBD99AF8FF3CD79F47DA1746Cs1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibDD4AE0FA339954E70A02BFE1B93639F7s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bibDD4AE0FA339954E70A02BFE1B93639F7s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib04A3AE4D872D59489029F80054FE1F05s1
http://refhub.elsevier.com/S0890-5401(20)30076-6/bib04A3AE4D872D59489029F80054FE1F05s1
http://dl.acm.org/citation.cfm?id=1926385

	Reachability of scope-bounded multistack pushdown systems
	1 Introduction
	2 Related work
	3 Multi-stack pushdown systems with scope-bounded runs
	4 Reachability in MPDS
	5 Solving location reachability for SMPDS
	5.1 Thread interfaces
	5.2 A fixed-point algorithm for location reachability

	6 Solving the configuration reachability problem for SMPDS
	6.1 Layered stack automata
	6.1.1 Saturation procedure
	6.1.2 Successor relation for layered automata

	6.2 Capturing thread configurations for unboundedly many contexts: thread automata
	6.3 Solving configuration reachability
	6.3.1 Computational complexity of configuration reachability of SMpds

	7 Conclusion
	Acknowledgments
	References

