
Static Data Race Detection
via Lazy Sequentialization

Bernd Fischer1 , Giulio Garbi2,3⋆ , Salvatore La Torre3 ,
Gennaro Parlato2 , and Peter Schrammel4

1 Stellenbosch University, Stellenbosch, South Africa, bfischer@sun.ac.za
2 University of Molise, Pesche, Italy, giulio.garbi/gennaro.parlato@unimol.it

3 University of Salerno, Fisciano, Italy, ggarbi/slatorre@unisa.it
4 Diffblue Ltd, Oxford, UK schrammelp@gmail.com

Abstract. We present a new symbolic static data race detection algo-
rithm, which is defined as a code-to-code translation that injects code to
monitor any accesses to shared memory locations. We implemented this
algorithm in the LaDR tool as an extension of an existing lazy sequen-
tialization schema which works well when used in tandem with bounded
model checkers. We evaluated LaDR on the benchmarks from the data
race demonstration category of SV-COMP 2024, and on safestack, a
lock-free data structure that contains a rare ABA-related bug. LaDR
finds more data races than all other tools participating in SV-COMP 2024,
and is the only tool that can find a data race in safestack.

Keywords: Data races · Static analysis · Lazy sequentialization

1 Introduction

A data race occurs if different computations in a concurrent system access the
same memory location “at the same time” (i.e., in arbitrary order but immedi-
ately following each other) and at least one of the two accesses is a write access.
Bugs caused by data races are often extremely difficult to detect manually, due
to their non-deterministic nature; therefore, a large number of different data race
detection tools have been developed to help developers in debugging.

Traditionally, most tools use dynamic techniques, where the target program
is instrumented and executed to produce an execution which is then analyzed
for races; for example, Eraser [24] tracks the set of locks held for each memory
access, while ThreadSanitizer [26] tracks the order of memory accesses and syn-
chronization operations throughout the program execution. Since they observe
real program executions over concrete inputs, dynamic techniques only analyze
feasible behaviors, and all identified data races can happen in practice (i.e., they
report no false positives). However, they may miss data races (i.e., report false
negatives) as a result of poor test suites.

Static techniques construct and analyze an execution model without actually
executing the target program. In principle, static techniques can be sound (i.e.,

⋆ Corresponding author

https://orcid.org/0000-0002-1815-218X
https://orcid.org/0000-0002-2836-4434
https://orcid.org/0000-0002-4978-4307
https://orcid.org/0000-0002-8697-2980
https://orcid.org/0000-0002-5713-1381


2 B. Fischer et al.

never report false positives) or complete (i.e., never report false negatives), but
in practice precise execution models become too complex for the analysis, and
the techniques often use a number of different abstraction methods, balancing
soundness and completeness. For example, Locksmith [22] uses lock state anal-
ysis, sharing analysis, correlation inference, and escaping and linearity checks.

SAT-based symbolic execution and model checking convert a program into a
model in form of a logical formula that is satisfiable if and only if the program
violates a given specification. Their performance has improved substantially in
the recent past. Retargeting them to data race detection has thus become a vi-
able alternative. We follow this approach here and describe a precise data race
detection tool based on bounded model checking; more specifically, we develop
and implement on top of the Lazy-CSeq sequentialization [12,13] a code-to-
code translation schema that rewrites a concurrent program into a bounded
non-deterministic sequential program such that data races can be detected by
assertion checking. This sequentialized program is processed by a backend ver-
ification tool that constructs a logical formula that is satisfiable iff the original
program contains a data race. The non-determinism in the original program is
reflected in underconstrained variables in the constructed formula.

Our schema uses a flag for each shared memory location to indicate that
location is involved in a data race, and injects control code that manipulates
these flags. The flags are non-deterministically set on a write (reflecting the fact
that this could be the write-part of the race), and checked on each other write or
read (reflecting the fact that this could be the second part of the race). The non-
determinism simplifies our design because we do not need to maintain complex
data structures, and can be handled efficiently by the SAT solver.

We implemented this schema in the LaDR data race detection tool for C
programs that use the pthreads-library as concurrency mechanism, using the
bounded model-checker CBMC [8,4] as backend verifier. LaDR is sound but
incomplete, due to the bounding of programs, but it performs very well over
the SV-COMP 2024 data race benchmarks. It finds the highest number (183
out of 232) of data races, outperforming the three best performing tools in this
category at SV-COMP 2024. It is also the only tool that can find a data race in
safestack, a lock-free data structure that contains a rare ABA-related bug.

2 Bounded Multi-Threaded Programs

Like bounded model checking [4], we focus on bug detection. We thus work
with bounded programs, which are syntactically guaranteed to terminate after a
bounded number of steps, e.g., through the absence of loops, recursion, and goto-
statements representing backward jumps. Unbounded programs can be bounded
through a series of simple code-to-code transformations such as loop unwinding,
function inlining, and function cloning [6].

LaDR supports the full C language, but we illustrate our code-to-code trans-
lation schema using a simple, multi-threaded imperative language with mutex
locking and unlocking operations for thread synchronization. Its grammar is



Static Data Race Detection via Lazy Sequentialization 3

P ::= (dec;)∗ (void fi (){(static? dec;)
∗ stm})i=0,...,n

dec ::= typ v | thread t | mutexm
typ ::= typ* | typ[exp] | int
stm ::= seq; | con; | {stm+}

seq ::= assume(exp) | assert(exp) | goto l | l:skip | if(exp) stm else stm | exp
con ::= n :stm | return | t = create fi() | join t | lockm | unlockm
exp ::= lval = exp | exp , exp | exp OP exp | exp ? exp : exp | &lval | lval | const | (*)
lval ::= lval [exp] | *lval | v

Fig. 1. Syntax of bounded multi-threaded programs

shown in Fig. 1; here m denotes a mutex, t a thread variable, v a program vari-
able, l a non-numeric label, and n a numeric label. Program variables can be
integers, pointers, or (multidimensional) arrays, in arbitrary combination.

A bounded multi-threaded program comprises a list of declarations of global
(or shared) variables and a list of parameterless thread functions fi that in turn
each comprise a list of local variable declarations and a (block) statement stm.

Shared and static local program variables, including pointers and individual
array elements, are initialized to 0; non-static ones remain uninitialized and
non-deterministically assume an arbitrary value (denoted by (*)) until they are
explicitly assigned. Mutexes must be declared globally and are initially free.

A sequential statement seq can be an assume- or assert-statement, a con-
ditional statement, a goto- or a labeled skip-statement, which serves as jump
target, or an expression, which is evaluated for its side effects. A concurrent
statement con can be a labeled statement of the form n : stm where stm is ei-
ther an unlabeled concurrent statement or a sequential statement that accesses
the shared memory, a return-statement, a thread creation or join operation, or
a mutex lock or unlock operation. A thread creation statement t = create fi()
spawns a new thread from fi. A thread join statement join t suspends the ex-
ecuting thread until the thread identified by t has executed its last statement.
Thread variables must be initialized by a create-statement before they can be
accessed by a join-statement. Lock and unlock statements respectively acquire
and release a mutex, with the usual blocking behavior.

Expressions exp can contain side effects in the form of assignment expressions
v = e, which compute the memory location denoted by the lvalue x, evaluate
e and write its value into the computed location, and return the value of e.
Comma expressions e1 , e2 explicitly sequence expression evaluation, i.e., they
first evaluate e1 for its side effects but discard its value, then evaluate e2 and
return its value. We also model arbitrary strict operators OP, lazy evaluation in
the form of conditional expressions e1 ? e2 : e3, which first evaluate the guard
expression e1 and, depending on the result, evaluate and return either e2 or e3,
and the address-of operator &.

We assume that a valid program P satisfies the usual well-formedness condi-
tions, and that its execution does not involve the application of any operator to



4 B. Fischer et al.

illegal arguments (e.g., division by zero). The last statement in the body of each
function must be its single return-statement. All concurrent statements in a
function as well as its first and last statement must be labeled with a numerical
label n, such that the labels in each function start from 0 and increase by 1
according to the statement order; any other label of the program must be non-
numerical. We call any statement with a numerical label a visible statement. This
structure is required by the lazy sequentialization to simulate context-switching
and can be established easily by code-to-code transformations.

In the interleaving semantics, a concurrent execution is defined as the inter-
leaving of the individual thread executions. A sequence of consecutively executed
statements from one thread is called a context. A round contains one (possibly
empty) context from each thread. We assume that all threads are scheduled
in each round in the same fixed order; other schedules can be simulated using
additional rounds and empty contexts.

A data race occurs in a bounded multi-threaded program P if there is an
execution in P where two different threads can access the same shared memory
location at the “same time” and at least one of these is a write to this shared lo-
cation. In the interleaving semantics, a data race is captured if these two accesses
occur respectively at the end (i.e., in the last executed visible statement) of one
context and at the beginning (i.e., in the first executed visible statement) of the
following context in the computation. Since these two accesses are not synchro-
nized there is always another computation that interleaves the two accesses in
the reversed order but still keeps one after the other (possibly by increasing the
number of contexts). In the following, we thus assume without loss of generality
that the write occurs always first in the interleaving.

3 Lazy Sequentialization

Sequentialization [23,17] is a general program analysis technique that transforms
concurrent programs into non-deterministic sequential programs such that the
reachability of program states is preserved. It can be implemented as a code-to-
code translation, which allows us to build tools for the analysis of multi-threaded
programs by reusing existing tools for sequential programs.

The lazy sequentialization translation (LS) [12,13] has been specifically de-
signed to work well in combination with SAT-based bounded model checking
tools (in particular CBMC), and thus fits our approach well. LS was designed
for reachability checking, and does not directly support data race detection. The
main contribution of this paper is to extend LS to detect data races efficiently
through the use of a shadow memory (see Section 4). This section gives an
overview of the aspects of LS that are relevant to this extension. Fig. 2 illus-
trates the complete translation; the code fragments in red are added for the data
race detection and can be ignored for now.

We assume that P is a bounded multi-threaded program with N + 1 thread
functions f0, f1, . . . , fN , where f0 denotes P ’s main function, and that it contains
N create-statements using each f1, . . . , fN exactly once as thread function; P



Static Data Race Detection via Lazy Sequentialization 5

Bounded multi-threaded program

thread functions

main()

thread simulation functions driver

Non-deterministic sequential program

. . .

0 : J(0,1) π( stm0 );

1  : J(1,2)     π( stm1 );

...

i-1: J(i-1,i)   π( stmi-1 );

i : J(i,i+1) π( stmi );

...

j  : J(j,j+1)   π( stmj );

j+1: J(j+1,j+2) π( stmj+1 );

j+2: J(j+2,j+3) π( stmj+2 );

...

k  : J(k,k+1)   π( stmk );

k+1: return;

skip

skip

execute
pc[ct]

cs[ct]

. . .

. . .

void main() { // driver

int drcx;

assume( 0 <= drcx && drcx < K*(N+1) );

int cx; cx = 0;  

int r; r = 0;

while(r<K) {

ct = 0;

if(!dr2 && cx <= drcx+N && act[ct])

{ cs[ct] = pc[ct] + (*);

assume( cs[ct] <= size[ct] ); 

if (drcx == cx) dr0 = 1; 

();

if (dr1 && cs[ct] > pc[ct]) dr2 = 1;

if (dr0) dr1 = 1;

pc[ct] = cs[ct];

act[ct] = (cs[ct] != size[ct]);

}

cx = cx + 1;
. . .

ct = N;

if(!dr2 && cx <= drcx+N && act[ct])

{ cs[ct] = pc[ct] + (*);

assume( cs[ct] <= size[ct] );

if (drcx == cx) dr0 = 1;

();

if (dr1 && cs[ct] > pc[ct]) dr2 = 1;

if (dr0) dr1 = 1;

pc[ct]  = cs[ct];

act[ct] = (cs[ct] != size[ct]);

}

cx = cx + 1;

r = r + 1;

}

assert( !drd );

}

P

Pseq

f0

main()

Fig. 2. Code-to-code translation overview

thus spawns at most N threads. The corresponding sequential program P seq is
formed by a new function main and a thread simulation function f seq

i for each
thread function fi in P . LS assumes the interleaving semantics, and simulates
the programs in a round-robin fashion up to a given number of rounds K > 0.

We use pc and cs to store the numerical labels respectively at the beginning
and the end of each context; size to store the largest numerical label for each
thread function fi; act to track the active (i.e., created but not yet terminated)
threads (initially only act[0] is set to true, as f seq

0 corresponds to the main

function of P ); and ct to store the numerical identifier of the thread being
currently simulated.

Main Driver. In each loop iteration the new main simulates a (possibly empty)
context of each active thread fct of P by calling the corresponding simulation
function f seq

ct for ct ∈ [0, N ] (see Fig. 2). Specifically, for each active thread, it

– non-deterministically guesses the numerical label of the next context-switch
and stores it in cs[ct];

– ensures that this value is within the appropriate bounds;
– calls the thread simulation function f seq

ct to simulate the thread ct from
pc[ct] through to cs[ct];

– stores cs[ct] in pc[ct] (which is used in the next round to resume the
computation); and

– sets act[ct] to false if cs[ct] is the label of the return-statement, which
means that the simulation of the thread is terminated.

Thread Translation. The main driver repeatedly calls each f seq
ct to simulate

the non-deterministically selected context. Each f seq
ct must therefore (i) maintain



6 B. Fischer et al.

the thread-local state between the consecutive calls, and (ii) execute only the
statements between pc[ct] and cs[ct]. The first is achieved simply by changing
the storage class of the thread-local variables to static (which is more efficient
than snapshotting the thread memory), while the second is achieved by injecting
control code that suppresses the execution of statements not within the range.
More specifically, the control code forces f seq

ct to jump over each individual visible
statement whose label is smaller than the stored label of the current context’s
resumption point or larger than its end point. This mechanism can be imple-
mented in a way that avoids complex branching in the control flow by exploiting
the consecutive natural numbers used as labels on the visible statements, and so
leads to simpler formulas. Specifically, right after each numerical label i (except
for the last one), a conditional jump of the form

if(pc[ct]>i || i >=cs[ct]) goto j ; (J macro)

is injected in front of the original statement. Note that the injected condition
becomes false iff the control is between pc[ct] and cs[ct], so that exactly the
same statements as in the original thread are executed by f seq

ct . The translation
always calls the J-macro with literal arguments i and i + 1 (see Fig. 2). In
effect, each f seq

ct jumps (in multiple hops) to the saved position pc[ct] in the
code, resumes its execution until the visible statement with the label cs[ct] of
the next context-switch is reached, and jumps (again in multiple hops) to the
final return-statement. Fig. 2 illustrates this.

We omit details of LS that are not essential for our data race instrumen-
tation, including the handling of control-flow branching and the simulation of
synchronization routines. These details can be found in [12,13].

4 Symbolic Data Race Detection Schema

In this section, we describe our LaDR data race detection scheme. It is imple-
mented as a code-to-code translation on top of LS (see Section 3) and uses the
symbolic shadow memory API provided by CBMC-SSM. We first give a high-
level overview of our translation before we discuss details of the extension to LS
(shown in red in Figure 2).

Overview. In the interleaving semantics, we can split a data race detection into
two distinct phases (cf. Section 2):

Phase 1: We non-deterministically select a context C1 in which the execution
of the last visible statement of C1 updates a shared location ℓ.

Phase 2: We check whether the first visible statement of the next (non-empty)
context C2 of another thread accesses ℓ; if so, a data race involving ℓ occurs.

In contrast to deterministic methods, which manipulate large and complex
data structures that store the status of each memory location in order to detect
data races, we rely on the schedule non-determinism, which frees us from having



Static Data Race Detection via Lazy Sequentialization 7

to encode these data structures at the formula level, and thus results in a more
scalable solution.

We implement the two phases on top of LS by injecting control code into
the main driver and rewriting the statements and expressions in the thread
functions. The statement rewriting is represented in Fig. 2 by the function π
described below. The injected control code implements a finite state machine that
identifies the contexts C1 and C2, and tracks the phases. Statement rewriting
injects code in the form of comma expressions to set the shadow memory bit for
each update to the shared memory when in Phase 1, and to query the shadow
memory for each access to the shared memory and to possibly flag that a data
race has occurred when in Phase 2.

We use the following auxiliary global variables which are set according to the
following invariants:

dr0 is set to true right before C1 is simulated, indicating that Phase 1 started;
dr1 is set to true right after C1 has been simulated, indicating that Phase 1 is

completed;
dr2 is initialized to false and set to true as soon as C2 is executed, indicating

that Phase 2 is completed; and
drd is initialized to false and set to true when a data race is detected.

Only drd is modified in the thread simulation functions while dr0, dr1, and dr2

are only updated in the main driver. This keeps the generated formulas compact.

Shadow Memory. In the LaDR scheme, we need to determine whether the
shared memory location at a given address has been updated by a thread or not.
For efficiency reasons, we keep this information as flags in a shadow memory,
which is a separate data structure that is invisible to the analyzed program but
can be accessed efficiently through its original memory addresses.

More specifically, we use the shadow memory as implemented in CBMC-
SSM [8], an extension of CBMC [4]. Its shadow memory associates a bit field
with each byte of memory. We assume that all bit fields are initialized to false

and then manipulate them via the following API functions:

set sm(addr, val) sets to val the bit fields of all memory bytes whose memory
addresses are between addr and addr + sizeof(T), where T is the type of
the object at addr .

get sm(addr) returns the disjunction of all bit field values corresponding to all
memory locations whose addresses are between addr and addr+sizeof(T).

Main Driver. We now describe the changes made to the main driver of LS.
Since we simulate K contexts for each of the N + 1 threads, we identify con-
texts by integers from 0 to K · (N + 1) − 1, increasing in the order in which
they are simulated. We declare and constrain a fresh local variable drcx, to
non-deterministically select the context C1 through its numerical identifier. The



8 B. Fischer et al.

simulation follows the same line as LS, with the difference that a thread is sim-
ulated only if it is active, and Phase 2 has not been completed yet (i.e., !dr2
holds). We also require that at mostN threads have been scheduled since Phase 1
has been completed (i.e., cx<=(drcx+N) holds). This prevents the main driver
from executing a function when Phase 1 is completed but Phase 2 has not started
within the following N contexts, which allows us to abort schedules that can be
captured by others, and avoids false positives (i.e., write and read are contained
in the same thread). A final assert-statement is injected into the main driver
to force failure when a data race is found. The extra code in the main driver
maintains the invariants stated above for the auxiliary global variables.

Thread Translation. The thread simulation functions keep the same structure
as in LS, since the extension only adds code (in form of comma expressions) at
the level of expressions. This is captured by the translation function π in Fig. 2.

Translation Modes. An expression may require different translations, depend-
ing on its usage in the code, similar to but not exactly following the usual
lvalue/rvalue distinction. For example, the occurrence of a shared variable x
requires the injection of data race detection code if the content of its memory
location is accessed in a read (e.g., in an arithmetic expression x + y) or write
operation (e.g., in an assignment of the form x = 0) but not if only the address
of its location is accessed (e.g., in an address-operation &x). Moreover, when
we rewrite expressions, we may need to duplicate sub-expressions, but without
duplicating any side effects (i.e., memory writes) they can have. We achieve
this in the usual way by hoisting the evaluation of side-effecting sub-expressions
into comma expressions. We distinguish the four different modes below, and use
Je,MK to denote the translation of an expression e in mode M :

ACC indicates that the value of the expression is used to access a memory
location; if it is an lvalue, it may thus be involved in a data race and we
instrument it with data race detection code.

NACC indicates that the value of the expression is not used to access the mem-
ory; if the expression itself is an lvalue, we thus do not instrument it with
data race detection code. However, its sub-expressions may be instrumented.

WSE is used to access the value of the expression, without executing its side
effects, if any. We require that any side effects have already been hoisted out
and executed in the preceding part of a comma expression. If the original
expression is an lvalue, the resulting expression is also an lvalue that identifies
exactly the same memory location as the original one.

PRE is only used to handle the case of the translation of array expressions; it is
used essentially to keep track of the ACC/NACC mode in the translation of
the sub-expressions.

The Translation Function π. Function π is composed of two parts. The first
part, which is injected only for visible statements, checks whether the execution
is at the end of the non-deterministically guessed context C1 (for Phase 1) or at



Static Data Race Detection via Lazy Sequentialization 9

Jassume(e)K =̂ assume((Je,ACCK , Je,WSEK))
Jassert(e)K =̂ assert((Je,ACCK , Je,WSEK))
JeK =̂ Je,ACCK
Jgoto lK =̂ goto l
Jl:skipK =̂ l:skip
Jif(e) stm else stm K =̂ if((Je,ACCK , Je,WSEK)) JstmK else JstmK
JreturnK =̂ return

Fig. 3. Translation of statements

the begin of the context C2 (for Phase 2). The result of these checks are stored
in the global variables P1 and P2. The second part (denoted by JstmK) injects
the data race control code into the expressions occurring in the statements stm;
Fig. 3 illustrates this transformation down to the level of the expressions (which
include assignments).

Hence, for a visible statement stm with the numerical label j of a thread i,
π(stm) is defined as follows:

P1 = (j == cs[i]-1) && dr0 && !dr1;

P2 = (j == pc[i]) && dr1;

JstmK

The conditions j == cs[i]-1 and j == pc[i] hold if j is the label of the last
and the first visible statement of the current context of thread i, respectively.
The other conjuncts in the assignment for P1 identify the current context of
i as C1 since dr0 && !dr1 means that Phase 1 has started but not finished
yet. Similarly, dr1 identifies the current context of i as C2; in fact, as soon as
the control returns to the main driver, dr2 is set to true and no more contexts
are simulated (see Fig. 2). P1 and P2 are set to false at any other visible
statements. For non-visible statements, no code is injected and the statement is
left unchanged.

The data race detection code that we inject differs for the two phases. In
Phase 1, we update the shadow memory and inject code of the form

P1 && set sm(&Je,WSEK, true) (Ph1)

whenever there is a write access to the shared memory location corresponding
to e. Note that this relies on C’s short-circuit evaluation of the conjunctions,
so that the second conjunct is not evaluated if P1 is false and thus the shadow
memory is (correctly) not updated if the statement is not at the end of the
non-deterministic selected context C1.

In Phase 2, we query the shadow memory to update the variable drd, and
inject code of the form

P2 && (drd = (drd || get sm(&Je,WSEK))) (Ph2)

whenever there is a read or write access to the shared memory location cor-
responding to e. Again, due to short-circuit evaluation, drd is updated only if



10 B. Fischer et al.

P2 holds (i.e., the execution is at the beginning of context C2); likewise, drd is
never updated once it has been set to true. Hence, drd is set to true only if a
write access to the location is recorded in the shadow memory. However, since
the shadow memory is updated only at the end of the context C1, this implies
that the write access and the second access can happen immediately adjacently
in the multi-thread program, i.e., that there is a data race on this location.

Expression Translation. Fig. 4 shows the detailed expression translation rules.
For simplicity, we assume that all lvalues identify shared memory locations; for
local memory locations, the data race detection code of the form (Ph1) and
(Ph2) must be omitted from the translation rules.

ACC and WSE are the only translation modes that are used by the statement
translation (see Figure 3). Consequently, these are the only modes where we
start the expression translation. The NACC mode comes into play only when no
access to the shared memory can occur through the corresponding lvalue (e.g.,
the operand of a reference expression), or when this is accounted for elsewhere by
the translation (e.g., the left-hand side of an assignment). The PRE mode only
occurs in the translation of prefixes of array expressions. The cases not shown
in Fig. 4 cannot occur in well-formed expressions.

Fig. 4(a) shows the translation for assignment expressions, i.e., expressions
of the form e1 = e2. In all modes but WSE, the translation unfolds as follows:

1. We generate the side effects of the left part e1 in NACC mode. Here, the
write access to the shared memory is annotated in the next part of the
rewriting process, eliminating the need to reconsider this location for data
race detection purposes.

2. We then generate the side effects of the right part e2 in ACCmode, accounting
for potential accesses to the shared memory.

3. If in Phase 1, we annotate the shadow memory of the assigned location; for
this we use an expression of the form (Ph1).

4. If in Phase 2 and a write access to e1 was already annotated into the shadow
memory, we update drd; for this we use an expression of the form (Ph2).

5. Finally, we simulate the assignment without generating further side effects.

In WSE mode, we just rewrite the expression to Je1 ,WSEK since all side
effects of the original expression have been accounted for at this point.

Fig. 4(b) shows the translation for the comma expressions of the form e1 , e2.
In ACC and PRE, we rewrite the entire expression again as a comma expression,
with the first sub-expression being e1 rewritten in ACC mode to account for
potential accesses to shared memory. The second sub-expression, e2, is rewritten
in the same mode as the original comma expression. In WSE mode, we simply
rewrite the comma expression as e2 in WSE mode.

Fig. 4(c) shows the translation for expressions the form e1 OP e2. These ex-
pressions are rewritten as expressions of the same type. Specifically, in ACC and
WSE mode, we pass on the sub-expression the same mode since the overall value
is computed by the values of the two expressions. Thus, we rewrite both e1 and
e2 respectively in ACC mode and WSE mode. In PRE mode, we adopt the same



Static Data Race Detection via Lazy Sequentialization 11

Je1 = e2 ,ACC/NACC/PREK =̂ Je1 ,NACCK , Je2 ,ACCK , P1 && set sm(&Je1 ,WSEK, true) ,
(a) P2 && drd = (drd || get sm(&Je1 ,WSEK)) , Je1 ,WSEK = Je2 ,WSEK

Je1 = e2 ,WSEK =̂ Je1 ,WSEK

Je1 , e2 ,ACCK =̂ Je1 ,ACCK , Je2 ,ACCK
(b) Je1 , e2 ,PREK =̂ Je1 ,ACCK , Je2 ,PREK

Je1 , e2 ,WSEK =̂ Je2 ,WSEK

Je1 OP e2 ,ACC/PREK =̂ Je1 ,ACCK OP Je2 ,ACCK
(c)

Je1 OP e2 ,WSEK =̂ Je1 ,WSEK OP Je2 ,WSEK

Je1 ? e2 : e3 ,ACCK =̂ (Je1 ,ACCK , Je1 ,WSEK) ? Je2 ,ACCK : Je3 ,ACCK
Je1 ? e2 : e3 ,PREK =̂ (Je1 ,ACCK , Je1 ,WSEK) ? Je2 ,PREK : Je3 ,PREK

(d)
Je1 ? e2 : e3 ,NACCK =̂ (Je1 ,ACCK , Je1 ,WSEK) ? Je2 ,NACCK : Je3 ,NACCK
Je1 ? e2 : e3 ,WSEK =̂ Je1 ,WSEK ? Je2 ,WSEK : Je3 ,WSEK

Je1 [e2 ],ACCK =̂ Je1 ,PREK , Je2 ,ACCK ,
P2 && drd = (drd || get sm(&Je1 ,WSEK [Je2 ,WSEK]))

(e)
Je1 [e2 ],NACC/PREK =̂ Je1 ,PREK , Je2 ,ACCK
Je1 [e2 ],WSEK =̂ Je1 ,WSEK[Je2 ,WSEK]

Jv ,ACC/PREK =̂ P2 && drd = (drd || get sm(&v))

(f) Jv ,NACCK =̂ (void) 0

Jv ,WSEK =̂ v

J*e,ACC/PREK =̂ Je,ACCK , P2 && drd = (drd || get sm(Je,WSEK))
(g) J*e,NACCK =̂ Je,ACCK

J*e,WSEK =̂ *Je,WSEK

J&e,ACC/NACCK =̂ Je,NACCK
(h)

J&e,WSEK =̂ &Je,WSEK

Jconst,ACC/NACCK =̂ (void) 0
(i)

Jconst,WSEK =̂ const

Fig. 4. Translation of expressions

rewriting as in ACC mode, as it represents the scenario when the bottom of the
recursion is reached during the rewriting of an array expression.

Fig. 4(d) shows the translation for the conditional expression. In all modes
but WSE, we replace expression e1 with a comma expression in which we eval-
uate e1 in ACC mode to accommodate potential memory access within e1, thus
ensuring the production of side effects. Then, we generate the same value as the
original expression by a rewriting it in WSE mode. For e2 and e3 we rewrite
them by keeping the starting translation mode. In WSE mode, we just pass the
translation function in WSE mode to the three sub-expressions.

Fig. 4(e) shows the translation for array expressions of the form e1[e2].
According to the grammar given in Fig.1, array expressions are generated by
yielding an index at each step and then recursing over the prefix. At the bottom
of the recursion an expression evaluating to the starting address of the array
elements is generated. This expression gives an lvalue, which can lead to an access
to the memory if the expression is not constant. Furthermore, the evaluation of



12 B. Fischer et al.

each index can lead to an access to the memory while the intermediate prefixes
do not. The translation rules are designed accordingly. In the ACC mode, we
translate e1 (i.e., the prefix of the array expression) in PRE mode, then e2 (i.e.,
the index generated at the current recursion step) in ACC mode, and finally we
inject code of the form (Ph2) to check a possible data race on e1[e2]. In NACC
and PRE modes, e1[e2] does not count as an access to the shared memory
and thus the portion of code to check for a possible data race is omitted. In
WSE mode, we just pass the translation function in WSE mode to the two sub-
expressions.

Fig. 4(f) shows the translation for identifier expressions v , e.g., the name of
a scalar or pointer variable. Since this cannot have any side-effects, we return
in WSE mode the original identifier. In ACC mode we just need to update drd

by injecting code of the form (Ph2). The same code is injected in PRE mode. In
the NACC mode we rewrite v to (void) 0 (recall that NACC means that v is
not used to access the data).

Fig. 4(g-h) shows the translation for the expressions of the forms *e and
&e. In the WSE mode, we simply apply the translation function recursively over
the operator. The PRE mode may occur only for *e, and for these expressions
we apply the same translation both in PRE and ACC modes: first we generate
the side-effects of e in ACC mode (since e may contain pointer variables), and
then we update drd by checking Phase 2 for the location of *e. In all remaining
cases, we just generate the side-effects of e. For expressions of the form &e, the
rewriting of e is done in NACC mode since in these expressions the lvalue yield
by e is not used to access memory locations.

Fig. 4(i) shows the translation for constant expressions const . Since this ex-
pression has no side effects and does not contribute to data races, we rewrite it
to (void) 0 in both ACC and NACC modes and to const itself in WSE mode.

The given translation rules can be safely simplified by removing the rewriting
of a sub-expression in ACC, NACC, and PRE modes if we can deem that there
are no side-effects and no shared memory location is accessed. We have adopted
this simplification and few more optimizations in our implementation.

5 Experimental Evaluation

We compared our LaDR data race detection tool with the leading contenders
from the recent 13th Software Verification Competition (SV-COMP 2024).5 SV-
COMP is the premier venue for evaluating the performance of verification tools
for C and Java programs using a comprehensive suite of established bench-
marks. The competition is organized into categories and subcategories based
on the specific properties to be verified for the programs. In SV-COMP 2024,
the c/NoDataRace-Main subcategory concerns data race detection. Three tools
emerged as top performers in this subcategory: Sv-sanitizers (based on Thread-
Sanitizer, see Section 1 for more details), Dartagnan [18], and Deagle [10] (see

5 https://sv-comp.sosy-lab.org

https://sv-comp.sosy-lab.org


Static Data Race Detection via Lazy Sequentialization 13

Section 6 for more details). We evaluated LaDR’s data race detection capa-
bilities against these three tools. The evaluation covered both the established
c/NoDataRace-Main benchmarks and a real-world benchmark, safestack, known
for its particularly rare ABA-related bug.

Experimental Setup. Each experiment was run on a dedicated Google Com-
pute Engine of type n2-custom-2-16384. This configuration provides two vC-
PUs running at 2.80GHz with 16GB of memory, running Ubuntu 22.04. We used
the runexec tool from the BenchExec suite [1] to manage the individual exper-
iments. Similar to SV-COMP 2024, runexec automatically terminates tool exe-
cutions exceeding pre-defined memory or time limitations. For the experiments,
we installed the follwoing tools on each machine: LaDR (replication package
available at https://doi.org/10.5281/zenodo.10826274), Dartagnan, Dea-
gle, and Sv-sanitizers.6 We mirrored the competition settings of SV-COMP 2024
by allocating 15 minutes and 12 GB of RAM per experiment.

SV-COMP Benchmarks. The SV-COMP 2024 data race category offers a rich
evaluation ground with 1013 benchmarks. These benchmarks average around 60
lines of code (excluding libraries) and represent a diverse set of concurrency
constructs and can exhibit significant complexity. We focused our comparison
on the 232 benchmarks with data races, since LaDR is designed as a data race
detection tool, rather than a data race freedom proving tool.

We ran LaDR with a loop unwinding bound and round bound large enough
to expose the data races, according to the usual bounded model checking prac-
tices. Other tools were executed using their respective competition scripts. LaDR
performs very well on these benchmarks, and returns the highest number of cor-
rect results (183 out of 232), followed by Dartagnan (165), Deagle (145) and
Sv-sanitizers (144). To validate the soundness of LaDR reports, we additionally
ran it on the SV-COMP 2024 benchmarks that were classified as data race free.
Notably, LaDR produced only one false data race report, but we believe that
this benchmark is in fact incorrectly classified.

Safestack. safestack is a real world benchmark implementing a lock-free stack
designed for weak memory models [31]. It contains a very rare ABA-related bug
that requires at least three threads and five context-switches for exposure under
the SC semantics (although only four context-switches under TSO or PSO),
while typical real-world concurrency bugs require at most three context-switches
to manifest themselves [19]. safestack, for this reason, presents a nontrivial
challenge for concurrency analysis tools.

LaDR is the only tool we are aware of that can automatically find this data
race: it takes 24 minutes and 4 seconds on the test machine to find the data
race under the SC semantics, using the minimal necessary loop unwinding and
round bounds. Deagle crashes during the analysis, while Dartagnan, PorSE, and
Sv-sanitizers did not find the bug in 12 hours.

6 Reproducibility packages for Dartagnan, Deagle, and Sv-sanitizers can be found on
the SV-COMP 2024 web page: https://sv-comp.sosy-lab.org/2024/systems.php

https://doi.org/10.5281/zenodo.10826274
https://sv-comp.sosy-lab.org/2024/systems.php


14 B. Fischer et al.

6 Related Work

Concurrent Program Sequentialization. The idea of sequentializing concur-
rent programs for analysis purposes was first proposed by Qadeer and Wu [23]
and then generalized to capture an arbitrary number of context switches by
Lal and Reps [17]. Several other sequentializations were proposed in the liter-
ature [16,7,3,27,20,28]. However, to the best of our knowledge, only two other
approaches have used sequentialization to detect data races. Qadeer and Wu [23]
adapted their sequentialization to data races involving only one given memory
location. The sequentialization we propose here does not have such restriction
and works for general aliasing. Like us, Coto et al. [5] have extended Lazy-CSeq
to detect data races. However, their implementation stores the target address of
each shared variable write in auxiliary variables and explicitly compares these
on each read and write to check for a race, leading to large formulas. Moreover,
they incorrectly identify some simultaneous read-accesses as data races. In SV-
COMP 2024, they found the data race in 39 benchmarks over the 232 ones that
had it, while they reported 295 false alarms over the 781 race-free benchmarks.7

Bounded Data Race Model Checkers. Dartagnan [18] is a bounded model
checker that can perform the analysis under several weak memory models which
can be in passed as input parameters. Although it is not a pure data race detec-
tor, it has participated in the data race detection category at SV-COMP 2024
by taking as input a sequential consistency model.

Deagle [10] computes a logical formula that captures the happens-before or-
dering of the shared memory accesses and thus detects data races as loops in
such ordering. The inter-thread behaviors are encoded by a logical formula that
captures the happens-before relations among the shared memory accesses and
the intra-thread behaviors by a propositional formula. The analysis is done by
passing the overall formula to an SMT solver.

Automata-Based Tools. Several members of the Ultimate model checker fam-
ily have also participated successfully in the data race detection category at SV-
COMP 2024. Ultimate Automizer [11] is the basic tool in this family. It is based
on an automata-theoretic approach to software verification that can check safety
properties. Ultimate Taipan [9] combines trace abstraction with abstract inter-
pretation on path programs. Ultimate GemCutter [15] is based on the CEGAR
paradigm and integrates the classical CEGAR generalization with orthogonal
generalization across interleavings. All these approaches encode data race detec-
tion in a more general framework than ours but their underlying automata-based
algorithms are quite different from our approach.

Data Race Freedom Provers. Goblint [29] is a static analyzer for multi-
threaded C programs that can perform data race detection. It uses a sound
concurrency abstraction, based on privatization, and combines different pointer
and value analyses which enable it to handle a wide range of locking schemes,
including locks allocated dynamically as well as locks stored in arrays.

7 https://sv-comp.sosy-lab.org/2024/

https://sv-comp.sosy-lab.org/2024/


Static Data Race Detection via Lazy Sequentialization 15

One of the most common techniques for race prevention is to protect any
access to a shared memory location with locks. Locksmith [22] is a static analy-
sis tool that discovers data races by checking whether this property is violated.
There have also been other techniques developed following this idea [30,14,29,2].
They differ in the locking structures they can address, the accuracy of the de-
tection, the need for user annotations, and the reduction of false alarms. The
approach we propose here is more general in the sense that we do not search
only for data races that can arise from careless lock usage and we do not require
user annotations as some of these approaches do.

Tools Based on Symbolic Execution. PorSE [25] combines partial-order re-
duction techniques with symbolic execution to handle data non-determinism, and
is implemented as an extension of KLEE. This tool has found race conditions in
memcached and GNU sort, showing that the technique scales to industrial-size
benchmarks. However, since KLEE explores execution paths individually, it usu-
ally struggles to find rare bugs that only manifest themselves in few executions,
as shown by our experiments.

7 Conclusions and Future Work

We introduced a new static approach to detect data races in multi-threaded
programs based on the LS sequentialization schema. We use a flag for each shared
memory location which is non-deterministically set on a write and checked on
each other access. The non-determinism allows us to inject simple control code
that manipulates these flags.

Our experiments show that our approach outperforms the other static meth-
ods on the SV-COMP 2024 benchmarks. LaDR is also the only tool that finds
the very rare data race in the safestack benchmark. Our results for this bench-
mark also confirm the general intuition that methods based on bounded model-
checking are more suitable for deep and rare bugs in concurrent programs.

We have also tried to extend our approach to perform the analysis in parallel,
following the schema from [21]. However, preliminary experiments have shown
that the scalability of this approach is only partially improved by our paral-
lelization scheme. We believe that data abstraction techniques can reduce the
size of the formulas computed by the underlying bounded model-checker and so
improve efficiency. The key will be to balance and reduce the different sources
of non-determinism and the number of processors available for the analysis.

Acknowledgments. This work was partially supported by AWS 2021 Amazon Re-
search Awards, INDAM-GNCS 2024, FARB 2021-2024 grants Università degli Studi
di Salerno, VITALITY Ecosystem, Spoke 1 MEGHALITIC (E13C22001060006) under
the NRRP MUR program funded by the EU - NGEU, and the Google Cloud Research
Credits program with the award GCP19980904.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



16 B. Fischer et al.

References

1. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements
and solutions. Int. J. Softw. Tools Technol. Transf. 21(1), 1–29 (2019).
https://doi.org/10.1007/S10009-017-0469-Y

2. Blackshear, S., Gorogiannis, N., O’Hearn, P.W., Sergey, I.: RacerD: composi-
tional static race detection. Proc. ACM Program. Lang. 2(OOPSLA), 144:1–144:28
(2018). https://doi.org/10.1145/3276514

3. Chaki, S., Gurfinkel, A., Sinha, N.: Efficient verification of periodic programs using
sequential consistency and snapshots. In: Formal Methods in Computer-Aided De-
sign, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014. pp. 51–58. IEEE
(2014). https://doi.org/10.1109/FMCAD.2014.6987595

4. Clarke, E.M., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In:
Jensen, K., Podelski, A. (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems, 10th International Conference, TACAS 2004, Barcelona, Spain,
March 29 - April 2, 2004, Proc. Lecture Notes in Computer Science, vol. 2988, pp.
168–176. Springer (2004). https://doi.org/10.1007/978-3-540-24730-2 15

5. Coto, A., Inverso, O., Sales, E., Tuosto, E.: A Prototype for Data Race Detec-
tion in CSeq 3 - (Competition Contribution). In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 28th Inter-
national Conference, TACAS 2022, Munich, Germany, April 2-7, 2022, Proc., Part
II. Lecture Notes in Computer Science, vol. 13244, pp. 413–417. Springer (2022).
https://doi.org/10.1007/978-3-030-99527-0 23

6. Currie, D.W., Hu, A.J., Rajan, S.P.: Automatic formal verification of DSP
software. In: Micheli, G.D. (ed.) Proc. of the 37th Conference on Design Au-
tomation, Los Angeles, CA, USA, June 5-9, 2000. pp. 130–135. ACM (2000).
https://doi.org/10.1145/337292.337339

7. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proc. of the 38th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28,
2011. pp. 411–422. ACM (2011). https://doi.org/10.1145/1926385.1926432

8. Fischer, B., Torre, S.L., Parlato, G., Schrammel, P.: CBMC-SSM: Bounded
Model Checking of C Programs with Symbolic Shadow Memory. In: 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2022, Rochester, MI, USA, October 10-14, 2022. pp. 156:1–156:5. ACM (2022).
https://doi.org/10.1145/3551349.3559523

9. Greitschus, M., Dietsch, D., Heizmann, M., Nutz, A., Schätzle, C., Schilling, C.,
Schüssele, F., Podelski, A.: Ultimate Taipan: Trace Abstraction and Abstract
Interpretation - (Competition Contribution). In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Inter-
national Conference, TACAS 2017, Uppsala, Sweden, April 22-29, 2017, Proc.,
Part II. Lecture Notes in Computer Science, vol. 10206, pp. 399–403 (2017).
https://doi.org/10.1007/978-3-662-54580-5 31

10. He, F., Sun, Z., Fan, H.: Deagle: An SMT-based Verifier for Multi-threaded Pro-
grams (Competition Contribution). In: Fisman, D., Rosu, G. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244, pp. 424–428.
Springer (2022). https://doi.org/10.1007/978-3-030-99527-0 25

https://doi.org/10.1007/S10009-017-0469-Y
https://doi.org/10.1145/3276514
https://doi.org/10.1109/FMCAD.2014.6987595
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-030-99527-0_23
https://doi.org/10.1145/337292.337339
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.1145/3551349.3559523
https://doi.org/10.1007/978-3-662-54580-5_31
https://doi.org/10.1007/978-3-030-99527-0_25


Static Data Race Detection via Lazy Sequentialization 17

11. Heizmann, M., Chen, Y., Dietsch, D., Greitschus, M., Hoenicke, J., Li, Y., Nutz,
A., Musa, B., Schilling, C., Schindler, T., Podelski, A.: Ultimate Automizer and
the Search for Perfect Interpolants - (Competition Contribution). In: Beyer, D.,
Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10806,
pp. 447–451. Springer (2018). https://doi.org/10.1007/978-3-319-89963-3 30

12. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded Model
Checking of Multi-threaded C Programs via Lazy Sequentialization. In: Biere, A.,
Bloem, R. (eds.) Computer Aided Verification - 26th International Conference,
CAV 2014, Vienna, Austria, July 18-22, 2014. Proc. Lecture Notes in Computer
Science, vol. 8559, pp. 585–602. Springer (2014). https://doi.org/10.1007/978-3-
319-08867-9 39

13. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded Verifica-
tion of Multi-threaded Programs via Lazy Sequentialization. ACM Trans. Program.
Lang. Syst. 44(1), 1:1–1:50 (2022). https://doi.org/10.1145/3478536

14. Kahlon, V., Sinha, N., Kruus, E., Zhang, Y.: Static data race detection for concur-
rent programs with asynchronous calls. In: van Vliet, H., Issarny, V. (eds.) Proc.
of the 7th joint meeting of the European Software Engineering Conference and
the ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, 2009, Amsterdam, The Netherlands, August 24-28, 2009. pp. 13–22. ACM
(2009). https://doi.org/10.1145/1595696.1595701

15. Klumpp, D., Dietsch, D., Heizmann, M., Schüssele, F., Ebbinghaus, M., Farzan,
A., Podelski, A.: Ultimate GemCutter and the Axes of Generalization - (Com-
petition Contribution). In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 28th International Conference, TACAS
2022, Munich, Germany, April 2-7, 2022, Proc., Part II. Lecture Notes in Computer
Science, vol. 13244, pp. 479–483. Springer (2022). https://doi.org/10.1007/978-3-
030-99527-0 35

16. La Torre, S., Madhusudan, P., Parlato, G.: Reducing Context-Bounded Concur-
rent Reachability to Sequential Reachability. In: Bouajjani, A., Maler, O. (eds.)
Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proc. Lecture Notes in Computer Science, vol. 5643,
pp. 477–492. Springer (2009). https://doi.org/10.1007/978-3-642-02658-4 36

17. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009).
https://doi.org/10.1007/s10703-009-0078-9

18. de León, H.P., Furbach, F., Heljanko, K., Meyer, R.: Dartagnan: Bounded Model
Checking for Weak Memory Models (Competition Contribution). In: Biere, A.,
Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems - 26th International Conference, TACAS 2020, Dublin, Ireland, April 25-30,
2020, Proc., Part II. Lecture Notes in Computer Science, vol. 12079, pp. 378–382.
Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 24

19. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of
multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of
the ACM SIGPLAN 2007 Conference on Programming Language Design and Im-
plementation, San Diego, California, USA, June 10-13, 2007. pp. 446–455. ACM
(2007). https://doi.org/10.1145/1250734.1250785

20. Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy Sequentialization for
the Safety Verification of Unbounded Concurrent Programs. In: Artho, C., Legay,

https://doi.org/10.1007/978-3-319-89963-3_30
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1145/3478536
https://doi.org/10.1145/1595696.1595701
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-030-99527-0_35
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/978-3-030-45237-7_24
https://doi.org/10.1145/1250734.1250785


18 B. Fischer et al.

A., Peled, D. (eds.) Automated Technology for Verification and Analysis - 14th
International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9938, pp. 174–191 (2016).
https://doi.org/10.1007/978-3-319-46520-3 12

21. Nguyen, T.L., Schrammel, P., Fischer, B., La Torre, S., Parlato, G.: Parallel bug-
finding in concurrent programs via reduced interleaving instances. In: Rosu, G.,
Penta, M.D., Nguyen, T.N. (eds.) Proc. of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA,
October 30 - November 03, 2017. pp. 753–764. IEEE Computer Society (2017).
https://doi.org/10.1109/ASE.2017.8115686

22. Pratikakis, P., Foster, J.S., Hicks, M.: LOCKSMITH: Practical static race
detection for C. ACM Trans. Program. Lang. Syst. 33(1), 3:1–3:55 (2011).
https://doi.org/10.1145/1889997.1890000

23. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Pugh, W.W., Cham-
bers, C. (eds.) Proc. of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11,
2004. pp. 14–24. ACM (2004). https://doi.org/10.1145/996841.996845

24. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.E.: Eraser: A
Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997). https://doi.org/10.1145/265924.265927

25. Schemmel, D., Büning, J., Rodŕıguez, C., Laprell, D., Wehrle, K.: Symbolic Partial-
Order Execution for Testing Multi-Threaded Programs. In: Lahiri, S.K., Wang, C.
(eds.) Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proc., Part I. Lecture Notes in Computer
Science, vol. 12224, pp. 376–400. Springer (2020). https://doi.org/10.1007/978-3-
030-53288-8 18

26. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic Race De-
tection with LLVM Compiler - Compile-Time Instrumentation for ThreadSani-
tizer. In: Khurshid, S., Sen, K. (eds.) Runtime Verification - Second International
Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised Se-
lected Papers. Lecture Notes in Computer Science, vol. 7186, pp. 110–114. Springer
(2011). https://doi.org/10.1007/978-3-642-29860-8 9

27. Tomasco, E., Inverso, O., Fischer, B., La Torre, S., Parlato, G.: Verifying
Concurrent Programs by Memory Unwinding. In: Baier, C., Tinelli, C. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 21st In-
ternational Conference, TACAS 2015, London, UK, April 11-18, 2015. Proc.
Lecture Notes in Computer Science, vol. 9035, pp. 551–565. Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0 52

28. Tomasco, E., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Using shared
memory abstractions to design eager sequentializations for weak memory models.
In: Cimatti, A., Sirjani, M. (eds.) Software Engineering and Formal Methods -
15th International Conference, SEFM 2017, Trento, Italy, September 4-8, 2017,
Proc. Lecture Notes in Computer Science, vol. 10469, pp. 185–202. Springer (2017).
https://doi.org/10.1007/978-3-319-66197-1 12

29. Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V., Vogler, R.: Static race
detection for device drivers: the Goblint approach. In: Lo, D., Apel, S., Khurshid,
S. (eds.) Proc. of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, Singapore, September 3-7, 2016. pp. 391–402.
ACM (2016). https://doi.org/10.1145/2970276.2970337

https://doi.org/10.1007/978-3-319-46520-3_12
https://doi.org/10.1109/ASE.2017.8115686
https://doi.org/10.1145/1889997.1890000
https://doi.org/10.1145/996841.996845
https://doi.org/10.1145/265924.265927
https://doi.org/10.1007/978-3-030-53288-8_18
https://doi.org/10.1007/978-3-030-53288-8_18
https://doi.org/10.1007/978-3-642-29860-8_9
https://doi.org/10.1007/978-3-662-46681-0_52
https://doi.org/10.1007/978-3-319-66197-1_12
https://doi.org/10.1145/2970276.2970337


Static Data Race Detection via Lazy Sequentialization 19

30. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on mil-
lions of lines of code. In: Crnkovic, I., Bertolino, A. (eds.) Proc. of the 6th
joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
2007, Dubrovnik, Croatia, September 3-7, 2007. pp. 205–214. ACM (2007).
https://doi.org/10.1145/1287624.1287654

31. Vyukov, D.: Bug with a context switch bound 5. https://social.msdn.

microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/

bug-with-a-context-switch-bound-5?forum=chess (2010), accessed: 2022-08-
17

https://doi.org/10.1145/1287624.1287654
https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5?forum=chess
https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5?forum=chess
https://social.msdn.microsoft.com/Forums/en-US/91c1971c-519f-4ad2-816d-149e6b2fd916/bug-with-a-context-switch-bound-5?forum=chess

	Static Data Race Detectionvia Lazy Sequentialization

