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1 INTRODUCTION

Concurrent programming is becoming ever more important as concurrent computer architectures
such as multi-core processors are becoming ever more common. However, concurrent program
analysis remains a stubbornly hard problem, since the number of possible interleavings grows ex-
ponentially with the number of the program’s threads and statements. Approaches that analyze
interleavings individually, such as concurrency testing [68] or a naïve application of bounded

model checking (BMC) [25], struggle particularly to find concurrency bugs that manifest them-
selves only in a few of the many interleavings. Approaches that use symbolic representations to
analyze all interleavings collectively typically fare better.

In this article, we develop and evaluate a new technique for lazy sequentialization, a symbolic
approach for the analysis of concurrent programs with shared memory. It builds on the strengths
of BMC, which has been used successfully to discover subtle errors in sequential software [11]. In
particular, our technique bounds the number of context switches it explores, which fits well into
the general BMC framework. Such context bounded analysis (CBA) approaches [58, 63, 78] are
empirically justified by work that has shown that errors typically manifest themselves within few
context switches [67].

The general sequentialization approach, originally proposed by Qadeer and Wu [79], is based
on the idea of translating concurrent programs into nondeterministic sequential programs that
(under certain assumptions) behave equivalently, so the different interleavings do not need be
treated explicitly during verification. This allows the reuse of sequential verification methods, but
since sequentializations can be implemented as code-to-code translations, it also allows the reuse
of unchanged tools as sequential verification backends. However, the sequentialization translation
alters the original program structure by injecting control code that represents an overhead for
the backend. Therefore, the design of well-performing tools under this approach requires careful
attention to the details of the translation. For example, eager sequentializations [35, 63, 89] guess
the different values of the shared memory before the verification and then simulate (under this
guess) each thread in turn. They can thus explore infeasible computations that need to be pruned
away afterwards, which increases the state space. Lazy sequentializations [58] instead guess the
context switch points and recompute the memory contents, and thus explore only feasible compu-
tations. This recomputation poses no problem for tools that compute function summaries [58, 59],
since they can re-use the summaries from previous rounds, but it becomes a serious problem for
BMC-based backends, because it can lead to exponentially growing formula sizes [42].

In this article, we design a new, surprisingly simple but effective lazy sequentialization schema
that aggressively exploits the structure of bounded programs and works very well with BMC-based
backends. The translation is carefully designed to introduce very small memory overheads and
very few sources of nondeterminism, so it produces simple formulas, and is thus very effective in
practice. The sequentialized program simulates all bounded executions of the original program for
a bounded number of rounds. It is composed of a main driver and an individual simulation function
for each thread, where function calls and loops of the input program are inlined and unrolled,
respectively. In each round, the main driver calls each thread simulation function; however, it
keeps the values of the thread-local variables between the different function activation (by turning
them into static variables). The thread simulation functions do not repeat all steps executed in the
previous rounds but instead jump (in multiple hops) back to the stored program location where the
previous round has finished. This avoids their recomputation and thus the exponentially growing
formula sizes observed by Ghafari et al. [42]. The translation does not require built-in error checks
or special dynamic memory allocation handling but can rely on the backend for these, because the
analysis of the translated program explores only reachable states of the original input program.
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We have implemented this sequentialization in the Lazy-CSeq tool that handles (1) the main
parts of the POSIX thread API [54], such as dynamic thread creation and deletion, and synchro-
nization via thread join, locks, and condition variables; and (2) the full C programming language
with all its peculiarities such as different data types, dynamic memory allocation, and low-level
programming features such as pointer arithmetic. Lazy-CSeq implements both bounding and se-
quentialization as source-to-source translations. The resulting sequential program can be given to
any existing backend verification tool for sequential C programs. We have tested Lazy-CSeq with
a wide variety of backends, including BLITZ [18], CBMC [23], CPAchecker [9], ESBMC [26], KLEE
[15], LLBMC [65], SMACK [81], and Ultimate Automizer [46].

Lazy-CSeq has consistently performed very well in the annual Software Verification Compe-
tition SV-COMP. It won the concurrency category of SV-COMP14, SV-COMP15, SV-COMP20,
and SV-COMP21, and came second in SV-COMP16 (where it was narrowly beaten by its sibling
MU-CSeq [92], which uses a different sequentialization), SV-COMP17, and SV-COMP19.1 Over
the years, it outperformed mature tools with native concurrency support, such as CBMC [2],
Ceagle [94], CIVL [97], CPAchecker, Divine [5], ESBMC, or SMACK. We have also evaluated Lazy-
CSeq over further, hard concurrency problems. On some of these, all other approaches (including
testing) failed and Lazy-CSeq was the only tool able to discover the bugs. These results justify
the general sequentialization approach, and in contrast to the findings by Ghafari et al. [42], also
demonstrate that a lazy translation can be more suitable for use in BMC than the more commonly
applied LR-translation [31, 63], as Lazy-CSeq also outperforms by orders of magnitude our own
LR-CSeq tool [34].

Contributions. This article builds on and extends our previous work, where we introduced the
translation and gave preliminary experimental results [52] and described the tool framework [51].
Here, we now give a more detailed description of the approach (including a formal definition of the
sequentialization transformation and formal correctness proofs) and a more in-depth evaluation,
including hard benchmarks that cannot be solved by any other approach.

In summary, in this article, we make the following contributions:

(1) We develop the first lazy sequentialization that is suitable for BMC-based verification back-
ends. We describe its surprisingly simple high-level idea and give a precise translation.

(2) We give a formal correctness proof for this translation.
(3) We describe an implementation of this translation within the CSeq framework.
(4) We evaluate our implementation over a large set of standard benchmarks, as well as several

hard benchmarks. We show that our implementation outperforms all other tools and is the
only one that can find bugs in all hard benchmarks.

Article Organization. The remainder of the article is organized as follows: We first introduce the
syntax and the semantics of multi-threaded and bounded multi-threaded programs in Section 2.
We give a detailed description of our translation, along with an informal correctness argument,
and formalize this translation as a set of rewrite rules in Section 3. We prove its correctness in
Section 4. We describe Lazy-CSeq’s implementation in Section 5 and summarize our experimental
evaluation in Section 6. We discuss related and future work in Sections 7 and 8, respectively and
end with our conclusions in Section 9.

1In fact, the only instance where it did not win or place second was SV-COMP18, where we did not participate due to late
rule changes.
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Fig. 1. Syntax of multi-threaded programs.

2 SHARED-MEMORY MULTI-THREADED PROGRAMS

We use a simple imperative language for multi-threaded programs to simplify the presentation.
It features dynamic thread creation, thread join, and mutex locking and unlocking operations for
thread synchronization. Thread communication is implemented via shared memory and modelled
using global variables. However, our Lazy-CSeq tool works on the full C programming language.
In this section and throughout this article, we use the terms multi-threaded program and concurrent

program interchangeably.
During the execution of a multi-threaded program, only one thread is enabled (i.e., allowed to

make a transition) at any given time. Initially, only the main thread is enabled; new threads can
be spawned by a thread creation statement. Once created, a thread is added to the pool of active

threads. At a context switch the currently enabled thread is suspended but remains active, and one
of the other active threads is resumed and becomes the new enabled thread. When a thread is
resumed its execution continues either from the point where it was suspended or, if it becomes
enabled for the first time, from the beginning.

All threads share the same address space: They can write to or read from global (or shared)
variables of the program to communicate with each other. We assume the sequential consistency

memory model: When a shared variable is updated its new valuation is immediately visible to all
the other threads [64]. We further assume that each statement is atomic. Note, however, that it is
always possible to decompose a statement into a sequence of atomic statements, each involving at
most one shared variable [66].

2.1 Syntax

The syntax of multi-threaded programs is defined by the grammar shown in Figure 1. Terminal
symbols are set in typewriter font. The notation 〈n t〉∗ represents a possibly empty list of non-
terminals n that are separated by terminals t; id denotes a generic variable, x a local variable, y
a shared variable, m a mutex, t a thread variable, p a procedure name, and l a label. We assume
expressions e to be formed over local variables, Boolean literals true and false, and integer liter-
als, which can be combined in a type-correct way using the standard Boolean and mathematical
operators and the program’s side-effect free functions. We adopt the usual square-bracket nota-
tion for arrays to indicate elements of fixed-sized vectors of scalar variables. We denote Boolean
expressions by b.

A multi-threaded program P (see Figure 2(a) for an example) consists of a list of global variable
declarations (i.e., shared variables), followed by a list of procedures. Shared variables are always
initialized to a type-specific default value. We denote the default value by 0, regardless of the type.
Each procedure has a list of zero or more typed parameters, and its body has a declaration of local

variables followed by a statement. A local variable can be declared as static, as in C. Such static
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variables are also initialized to 0. A statement is either a sequential, a concurrent, or a compound

(i.e., a sequence of statements enclosed in braces) statement.
A sequential statement seq can be an assume- or assert-statement, an assignment, a call to a

procedure that takes multiple parameters (with an implicit call-by-reference parameter passing se-
mantics), a return-statement, a conditional statement, a while-loop, a goto- or a skip-statement
with a non-numerical label l . Note that by construction all jump targets are skip-statements, be-
cause these are the only statements where we allow labels.

Sequential statements affect only the thread-local control flow and involve only local variables;
the sequentialization thus does not need to simulate context switches at these [75]. Unlike global
variables, local variables remain uninitialized after their declaration; therefore, until explicitly set
by an appropriate assignment statement, they can nondeterministically assume any value allowed
by their type. We also use the symbol * to denote the expression that nondeterministically evalu-
ates to any possible value; hence, with x:= *, we mean that x is assigned any possible value of its
type domain.

A concurrent statement conc can be a concurrent assignment, a call to a thread routine, such as
a thread creation or join, or a mutex operation (i.e., init, lock, unlock, and destroy). A concurrent
assignment assigns a shared (respectively, local) variable to a local (respectively, shared) one. A
thread creation statement t := create p (e1, . . . , en ) spawns a new thread from procedure p with
expressions e1, . . . , en as arguments. A thread join statement, join t , suspends the enabled thread
until the thread identified by t terminates its execution, i.e., after the thread has executed its last
statement. Lock and unlock statements, respectively, acquire and release a mutex. If the mutex is
already acquired, then the lock operation is blocking for the thread, i.e., the thread is suspended
until the mutex is released and can then be acquired.

We assume that a valid program P satisfies the usual well-formedness and type-correctness
conditions. We also assume that P contains a procedure main, which is the starting procedure of
the only thread that exists in the beginning. We call this the main thread. We further assume that
there are no calls to main in P and that no other thread can be created that uses main as starting
procedure.

2.2 Semantics

A thread configuration of a multi-threaded program P is a triple 〈locals, pc, stack〉, where locals is a
valuation of the thread’s local variables, pc is the program counter that points to the next statement
P (pc) in P to be executed, and stack is a stack of procedure calls. A thread configuration is initial if
locals is any valuation that assigns 0 to each static variable and an arbitrary value otherwise, pc is
the program counter of the first statement of the thread, and stack is the empty stack (denoted by⊥
in the following). At a procedure call, the program counter of the caller and the current valuation
of its local variables are pushed onto the stack, and the control moves to the initial location of the
callee. At a procedure return, the top element of the stack is popped, and the local variables and
the program counter are restored. Any other statement follows a standard C-like semantics.

A thread identifier is a non-negative integer. A multi-threaded program configuration c consisting
of n active threads with identifiers I = {i1, . . . , in } is a tuple of the form 〈sh, en, {thi }i ∈I 〉, where
(1) sh is a valuation of the shared variables, (2) en ∈ I ∪ {†} is either the identifier i ∈ I of the
enabled thread (i.e., the only active thread that is allowed to make a transition), or the token †
to mark error configurations, and (3) thi is the configuration of the thread with identifier i . A
configuration c = 〈sh, en,A〉 is initial if sh is the default evaluation of the shared variables, en = 0
is the identifier of the main thread, and A = {th0}, where th0 is an initial configuration of main
(i.e., the main thread); c denotes normal termination if en � † and A = ∅.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 1. Publication date: December 2021.



1:6 O. Inverso et al.

A transition of a multi-threaded program P from a configuration c to a configuration c ′, denoted
by c →i

P
c ′, corresponds to the execution of a statement by the enabled thread (i.e., the thread with

identifier i = en). If the statement being executed is sequential, then only the configuration then of
the enabled thread is updated, as usual. The execution of an assert-statement with a condition
that evaluates to false causes a transition into an error configuration, from which no further
transitions can be taken. The execution of an assume-statement allows a transition only if the
condition evaluates to true. The execution of a create-statement adds (with a fresh identifier i)
a new thread configuration to the configuration of the multi-threaded program, which consists
of a valuation of the local variables the thread start function, the program counter pointing to its
initial statement, and the empty stack. The execution of a join-statement allows a transition for the
enabled thread only if the thread identified by the statement’s argument t has already terminated
its execution (i.e., t � I ). The execution of a lock-statement allows a transition for the enabled
thread only if the mutexm is not acquired by any thread; it leads to a new configuration where the
value of m is set to en. The execution of an unlock-statement on a mutex m, held by the enabled
thread, frees it. When the enabled thread terminates, its configuration then is removed from the
program configuration. The enabled thread in c ′ is nondeterministically selected from the pool of
active threads of c ′. Note that for any schedule for P under which the execution of a join- and
lock-statement blocks there is an equivalent execution with a different schedule under which the
statement does not block. For example, any execution of P containing a join from a thread t1 on a
thread t2 can always be captured by another execution where t1 is pre-empted immediately before
the join and is re-scheduled only after t2 terminates (if at all). This re-scheduling does not affect
the reachability of error states, which is what our approach is checking for. For the purpose of
our proofs, we therefore assume without loss of generality that join- and lock-statements never
block in an execution. We finally define→P to be the union of all relations→i

P
.

Let P be a multi-threaded program with configurations c and c ′. A run or execution of P from c to
c ′, denoted by c �P c ′, is any sequence of zero or more transitions c0 →P c1 →P · · · →P cn where
c = c0 and c ′ = cn . A configuration c ′ is reachable in P if c �P c ′ and c is an initial configuration
of P .

A context of a thread with identifier i from c to c ′, denoted by c �i
P
c ′, is any run c0 →i

P
c1 →i

P

· · · →i
P
cn where c = c0 and c ′ = cn . A run π = c �P c ′ is k-context bounded if it can be obtained

by concatenating at most k contexts of P , i.e., there exist c0, c1, . . . , ck ′ with k ′ ≤ k , such that

πj = ci−1 �
i j

P
ci is a context (of some thread i j ), for any j ∈ {1, . . . ,k ′}, and π = π1 ·π2 · · · · ·πk ′ . We

assume that context switches happen only when the control is at a concurrent statement or a thread
terminates its execution, since this simplifies the exposition but does not affect the reachability of
error states [75].

A schedule of a program P is a fixed sequence ρ of thread indices. A run c0 �
i1
P
c1 �

i2
P
· · · �in

P
cn

of P is a round w.r.t. ρ (also called a round-robin execution) if i1, i2, . . . , in is a subsequence of ρ. A
run isk round-robin w.r.t. ρ if it can be obtained by concatenating at mostk-round-robin executions
of P w.r.t. ρ.

2.3 Reachability

Let P be a multi-threaded program and k be a positive integer. The reachability problem asks
whether there is a reachable error configuration of P . Similarly, the k-context (respectively, k-round-

robin) reachability problem asks whether there exists an error configuration of P that is reachable
through a k-context (respectively, k-round-robin) execution.

Example. Figure 2(a) shows an example of a multi-threaded program with a reachable assertion
failure. It models a producer-consumer system, with two shared variables, a mutex m, and an integer
c that stores the number of items that have been produced but not yet consumed.
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Fig. 2. (a) Original multi-threaded producer-consumer program containing a reachable assertion failure. In

the main thread, functions P and C are both used twice to spawn a thread. (b) Corresponding bounded

multi-threaded program, resulting from applying standard transformations (with a loop unrolling bound of

n = 2) to the original program. The functions P1 and P2 represent two distinct copies of the P-thread that

were spawned twice in the original program. (c) Corresponding sequentialized program. The code injected

by the source transformation is shown in grey. For succinctness, we use C-style initializers in declarations

as well as macros.
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Fig. 3. Syntax of bounded multi-threaded programs.

The main function initializes the mutex and spawns two threads executing P (producers) and
two threads executing C (consumers). Each producer acquires m, increments c,2 and terminates by
releasing m. Each consumer first checks whether there are still elements not yet consumed; if so
(i.e., the assume-statement on c > 0 holds), then it decrements c, checks the assertion c ≥ 0, and
terminates. Otherwise it terminates immediately.

The mutex ensures that at any point of the computation at most one producer is operating.
However, the assertion can still be violated, since there are two consumer threads, whose behaviors
can be freely interleaved: With c = 1, both consumers can pass the assumption, so both decrement
c and one of them will write the value −1 back to c, and thus violate the assertion.

2.4 Bounded Multi-threaded Programs

BMC tools work on bounded programs, i.e., programs that are syntactically guaranteed to ter-
minate after a bounded number of transitions. This intuitively means that there are no loops or
(recursive) function calls and that all goto-statements describe forward jumps. The bounded ver-
sion of a program can be obtained by applying standard program transformations such as loop
unwinding and function inlining [28].

In this section, we introduce the multi-threaded version of bounded programs. More precisely,
bounded multi-threaded programs are defined by the syntax given in Figure 3; this syntax defines
a variant of the multi-threaded programs defined by the full syntax in Figure 1. A bounded multi-
threaded program consists of a finite number of thread start functions fi ; each fi is a bounded
function containing no loops and no function calls and all goto-statements must define forward
jumps. Thus, we simplify the notation introduced in Section 2.2 and denote a configuration of a
thread simply as a pair of the form 〈locals, pc〉.

We impose that each fi (for i > 0) is used exactly once as start function in a create-statement
to spawn a new thread and that there exists a function f0 corresponding to the original program’s
main thread. The first statement of each of these functions must either be a concurrent statement or
a labeled skip-statement. The last statement of each of these functions must be a labeled return-
statement, and this must be the only occurrence of a return-statement in each function.

We further impose that all concurrent statements in a function (as well as each function’s first
statement, respectively, final return-statement) are labeled with a numerical label n, such that
the labels in each function start from 0 and increase by 1 according to the program order; any
other label of the program must be non-numerical. This labeling restriction is required by our
sequentialization to reposition the program counter after a simulated context switch. Note that
numerical labels can only be targets of goto-statements introduced by our sequentialization. We

2Note that, to simplify the presentation, we treat the increment and decrement statements as atomic, rather than decom-
posing them into sequences where each statement involves at most one shared variable access.
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Fig. 4. Code-to-code translation overview.

use the term visible statement to denote any statement with a numerical label. We define an auxil-
iary function �P on the program counters in a program P such that �P (pc) is the preceding label,
or more specifically, the largest numerical label of any statement with program counter pc′ within
the same thread function as pc such that pc′ ≤ pc. Note that �P is well-defined, because the first
statement in each thread function is labeled with 0. We are using �max

P
( fi ) to denote the largest

numerical label occurring in the thread simulation function fi .
Furthermore, to simplify the presentation, we assume that each thread simulation function has

a single argument of type int (although our implementation supports arbitrary argument lists).
We also assume that the identifier of a thread with start function fi is i .

Note that a general multi-threaded program can easily be transformed into a bounded multi-
threaded program obeying all of the above restrictions by a series of simple source-to-source trans-
formations such as loop unwinding, function inlining, and function cloning. Figure 2(b) gives an
example of a bounded multi-threaded program that is obtained from the multi-threaded program
from Figure 2(a) with an unwinding bound of 2. Note that we get two separate copies of each of
the thread functions P andC , since the original program spawns two producer and two consumer
threads.

We define a (bounded) sequential program as a (bounded) multi-threaded program that does not
use any concurrent statements other than concurrent assignments but may use numerical labels
at all statements.

3 LAZY SEQUENTIALIZATION FOR BOUNDED MULTI-THREADED PROGRAMS

We now describe our code-to-code translation from a bounded multi-threaded program P to a
sequential program P

seq

k,ρ
that simulates all k-round-robin executions of P w.r.t. ρ, for any given

k > 0 and schedule ρ. We fix a program P consisting of n+1 functions f0, . . . , fn , where f0 denotes
the main function, as shown in the upper half of Figure 4. We recall that by definition, P contains
n calls to create, which spawn (at most) n threads using as start functions f1, . . . , fn , respectively.
Our translation guarantees that P fails an assertion in a k-round-robin execution w.r.t. ρ if and only
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1:10 O. Inverso et al.

if P seq

k,ρ
fails the same assertion. Furthermore, the translation allows us to perform on the bounded

multi-threaded program all the reachability analyses that are supported by the sequential backend
tool.
P

seq

k,ρ
is composed of a new function main and a thread simulation function f

seq
i for each thread

fi in P , as shown in the lower half of Figure 4. The new main of P seq

k,ρ
calls, in the order given by

ρ, the functions f
seq

i for k complete rounds (see Figure 5 for details). For each thread it maintains
the numerical label at which the context switch was simulated in the previous round and where
the computation must thus resume in the current round.

Each f
seq

i is essentially fi , with each call to a thread routine such as create, join, lock, or
unlock replaced by a call to a corresponding simulation function and few lines of additional control
code that re-positions the program counter. When executed, each f

seq
i jumps (in multiple hops) to

the saved position in the code and then restarts its execution until the label of the next context
switch is reached (recall that the numerical labels in fi identify the relevant context switch points
in the original code, i.e., the visible statements). We make all local variables persistent (i.e., static),
so their valuations are retained across invocations of the thread simulation functions, which are
regular functions in P

seq

k,ρ
; hence, we do not need to re-compute them when resuming suspended

executions.
Figure 2(c) shows the resulting sequentialized program for the bounded Producer-Consumer

example shown in Figure 2(b). The parts in black correspond to the unwound original program;
those in light grey are injected to achieve the desired sequentialization.

We now describe our translation in a top-down fashion. We start by describing the (global)
auxiliary variables used in the translation in Section 3.1. Then, we give the details of function
main of P seq

k,ρ
in Section 3.2 and illustrate how to construct each f

seq
i from fi in Section 3.3. Finally,

we discuss how the thread routines are simulated in Section 3.4. We convey an informal correctness
argument as we go along. The formal translation is given in Section 3.5, while Section 4 contains
a formal proof of correctness.

3.1 Auxiliary Data Structures

Let N be a symbolic constant denoting the maximal number of threads in the program, i.e.,
n + 1. During the simulation of P , the sequentialized program P

seq

k,ρ
maintains the following data

structures:

— bool active[N] tracks whether a thread is active, i.e., has been created but not yet termi-
nated. Initially, only active[0] is true, since f

seq
0 simulates the main function of P ;

— int arg[N] stores the argument used for thread creation (recall that for simplicity, we have
assumed a single argument with an implicit call-by-reference semantics in Section 2.4);

— int size[N] stores the largest numerical label �max
P

( fi ) for each thread simulation function
fi ;

— int pc[N] stores the label of the last context switch point for each thread simulation func-
tion;

— int ct tracks the identifier of the thread currently under simulation;
— int cs contains the (pre-guessed) numerical label at which the next context switch for thread

ct will be simulated.

Note that the thread simulation functions f
seq

i read but do not write any of the above data struc-
tures. N and size[] are constants computed from the bounded program and remain unchanged
during the simulation. arg[] is set by seq_create (that simulates create) and remains unchanged
once set. active[] is set by seq_create and unset by the main driver, as described in the next
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Fig. 5. Main driver.

section. pc[], ct, and cs are updated by the main driver following the mechanism shown in the
next section.

3.2 Main Driver

Figure 5 shows the code of the function main in P
seq

k,ρ
. It drives the simulation: Each iteration of

the loop simulates an entire round of a computation of P . To simulate each thread fct, we invoke
the corresponding simulation function f

seq
ct with the argument arg[ct] that was originally used

to create the thread. The order in which the functions are called corresponds to the round-robin
schedule ρ, which we assume for simplicity to be the sequence 〈0, . . . ,n〉.

For each active thread the driver thus executes the following steps:

(1) nondeterministically guess the label for the next context switch point and store it in cs,
(2) check that the value is appropriate,
(3) call the thread simulation function to simulate the thread from pc[ct] through to cs,
(4) store cs in pc[ct] (used in the next round to restart the computation from this label), and
(5) set active[ct] to false if cs is the label of the return-statement (i.e., the simulation of

the thread is completed).

The choice of an appropriate value for cs is simplified by the bounded structure of P , more pre-
cisely, by the fact that all jumps are forward. We can thus pick any value for cs that is between
the value stored in pc[ct] (corresponding to the case that the thread will not make any progress,
hence skips the round) and the largest numerical label in f

seq
ct (which corresponds to the last pos-

sible context switch point in the code of the corresponding thread fct). Note that this guess is the
only source of nondeterminism introduced by our translation.

3.3 Thread Translation

Here, we describe how each function fi representing a thread in P is converted into a thread
simulation function f

seq
i in P

seq

k,ρ
.
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Persistence of Thread Local Storage. Each thread fi in P is simulated in P
seq

k,ρ
by repeated calls to

the thread simulation function f
seq

i ; each invocation executes a fragment of the code according
to the context switch points that are guessed in the main function. f seq

i therefore needs to main-
tain the thread-local state between consecutive invocations. We achieve this by imposing that each
thread-local variable’s storage class is static. However, since local variables are considered unini-
tialized right after their declaration (i.e., can take any value from their respective domains), while
static variables are initialized to 0 by default, we explicitly assign a nondeterministic value to such
local variables. For instance, the local variable declaration int l; in Figure 2(b) is turned into
static int l:=*;. This directly applies to all primitive types and can be done at the level of the
components for arrays and structured types.

Thread Pre-emption and Resumption. When a function f
seq

i is called for the first time, it starts
its execution from the beginning. In the subsequent calls, it must skip over the statements already
executed in previous calls to resume the simulation from its last context switch point. When the
control reaches the label guessed for the next context switch, it must return without executing
any further statements. Different solutions exist to implement this using goto-statements and
distinct labels associated with every meaningful context switch point in the code. We tried to
use a multiplexer at the top of the thread’s body, implemented with a switch and a series of
goto-statements, to jump over the statements already executed, directly to the starting label. We
also injected additional code at the context switch label to return immediately when the thread is
pre-empted. However, this schema has performed poorly in our experiments, possibly because it
introduces complex control flow branching, and consequently complex formulas.

In contrast, the schema we present here scales well when used together with BMC backends,
although it may look counterintuitive at first. Recall that bounded multi-threaded programs use
consecutive natural numbers as labels on the visible statements in program order, starting with 0
for the first statement in each function. We then use these labels and goto-statements in a way
that avoids complex branching in the control flow. Specifically, right after each numerical label i

(except for the last one), we inject (via a macro J) a conditional jump of the form

if(pc[ct]>i || i >=cs) then goto j; (J macro)

in front of the original statement. Note that J is always called with arguments i and i+1 (see
Figure 2(c)). When the thread simulation function tries to execute statements before the context
switch label of the previous round, or after the guessed context switch label, the condition becomes
true, and the control thus jumps to the next label without executing actual statements of the thread.
This achieves the positioning of the control at the program counter corresponding to pc[ct] with
potentially multiple hops, and similarly, the fall-through to the last statement of the thread (which
is by assumption always a return) when the guessed context switch label is reached. Note that
whenever the control is between these two labels the injected condition becomes false and the
statements of f seq

ct are executed as in the original thread. Figure 4 illustrates this.
As an example, consider the sequentialized program in Figure 2(c), and assume that Pseq

1 is called
(i.e., ct = 1) with the previous context switch point at label 2 (i.e., pc[1] = 2) and the next context
switch point at label 6 (i.e., cs = 6). At label 0, the condition of the injected if-statement is true,
thus the goto-statement is executed and the control jumps to label 1. There, the condition is again
true, and the control jumps to label 2. Now, the condition check fails, thus the underlying code is
executed, up to label 6. Here, the condition of the injected if-statement holds again, so the control
jumps first to label 7, and then to label 8, thus reaching the return statement without executing
any other code of the thread.
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Fig. 6. (a) Code of thread function P1 (see Figure 2 for the full code). (b) Code of corresponding thread

simulation function Pseq1 . Code injected by the sequentialization transformation is shown in grey; J- and

G-macros are shown as comments before their expansion.

Handling Control-flow Branching. Some care must be taken in handling branches and jumps in
the control flow, to avoid simulating infeasible computations. Consider for example the if-then-
else in P1 of Figure 6(a), and assume that pc[ct] = 2 and cs = 3 when executing the corresponding
code of Figure 6(b), i.e., in this round the sequentialized program is assumed to simulate (feasible)
control flows between labels 2 and 3. However, if c ≤ 0 (and thus b evaluates to false), then
the program’s control flow goes from label 2 into the else-branch right. Without the assume-
statement asserted by the macro G(3), the control flow would reach label 4, and the condition
in the if-statement inserted by J(4,5) would be tested. Since this would hold, the control flow
would then slide through to label 8 and return to the main driver, which would then set pc[ct]
to 3. In the next round, the computation would then duly resume from this label—which in the
underlying multi-threaded execution is unreachable! Similar problems can occur when the context
switch label is in the body of the else-branch and with goto-statements.

Note that we could fix this problem by assigning pc in the called function rather than in the main
driver. However, this would require to inject at each possible context switch point an assignment to
pc guarded by a nondeterministic choice. This has performed poorly in our experiments. The main
reason for this is that the control code is spread “all over” and thus even small increments of its com-
plexity may significantly increase the complexity of the formulae computed by the backend tools.

We therefore simply prune away simulations that store unreachable labels in pc. For this, we
inject (via a macro G) a simple guard of the form

assume(cs > j); (G macro)

where j is largest numerical label up the point where the guard is injected. We insert such guards at
all control flow locations that are target of an explicit or implicit jump, i.e., right at the beginning of
each else-block, right after the if-statement, and right after any non-numerical label in the actual
code of the simulated thread that can be the target of a goto-statement of the starting program
(see Figure 6 for examples).

We now show informally that this adjustment indeed suffices to prune away all simulations
involving such spurious control flows. The formal correctness proof is given in the next section.
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Fig. 7. Thread simulation stubs.

Consider first the case of goto-statements. We assume without loss of generality that the state-
ment’s execution is feasible in the multi-threaded program and that the target’s label is in the
code after the intended context switch point cs; note that in this case cs is unreachable because
the control flow jumps over the corresponding label. However, when resuming the thread in the
simulation, we would instead restart from cs, thus ending up into a spurious computation. But
since a G-macro is inserted at the jump’s target with an argument that is greater or equal to cs,
and because all goto-statements describe forward jumps, the injected assumption fails, and this
simulation gets correctly pruned away.

The argument for if-statements requires two cases that follow the same lines as discussed for
the goto-statements. First consider that the planned context switch point cs is in the then-branch
but the if-condition evaluates to false. Then the guard at the beginning of the else-statement
fails, because the argument passed to the G-macro here corresponds to the last label in the then-
branch and thus has at least the value of cs, so the injected assume-statement fails. In the sym-
metric scenario (i.e., the planned context switch point is in the else-branch but the if-condition
evaluates to true), the assume-statement guard injected by the guard after the if-statement will
fail, because the value cs is guaranteed to be less or equal than the last label in the else-branch,
which is used as argument in the G-macro. Note that the J-macro at the last context switch point
in the else-branch jumps over this guard so it never prunes feasible control flows.

We stress that though the guess of the context switch points is done eagerly and we thus need
to prune away infeasible guesses, the simulation of the input program is still done lazily. In fact,
the computation is pruned as soon as we pass the guessed context switch before executing any
other statement of the original program. Thus, all the statements of the input program executed
until that point correspond to a prefix of a feasible computation of the input program.

3.4 Simulation of Thread Routines

For each thread routine, we provide a verification stub, i.e., a simple standard function that simu-
lates the original implementation for verification purposes. Figure 7 shows the stubs for the rou-
tines used in this article. Our implementation provides stubs for further thread routines in the
pthread API, which are typically equally straightforward.

In seq_create, we simply set the thread’s active flag and store the argument to be passed (later,
from the main driver) to the thread simulation function. The seq_create stub uses an additional

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 1. Publication date: December 2021.



Bounded Verification of Multi-Threaded Programs via Lazy Sequentialization 1:15

integer argument tid as thread identifier that is statically added during the translation and is set
to the index i of the thread function fi used in the corresponding create-statement.

Under the semantics of multi-threaded programs, a thread invoking join t cannot progress un-
less t is terminated. In the simulation, a thread is terminated (and the driver sets the corresponding
active-entry to false) if it has reached the thread’s last numerical label. The stub seq_join thus
uses an assume-statement with the condition active[tid]=false to prune away any simulation
that involves switching to a thread that is stuck at a statement join t. This is aligned with the
semantics of join-statements given in Section 2.2.

For mutexes, we need to know whether they are free or already destroyed, or which thread holds
them otherwise. We thus model mutexes as integers and define two constants FREE and DESTROYED
that have values different from any possible thread index. When we initialize or destroy a mutex,
we assign it with the appropriate constant. If we want to lock a mutex, then we assert that it is
not destroyed and then check whether it is free before we assign to it the index of the thread that
has invoked lock. Similarly to the case of join, according to the semantics given in Section 2.2,
we abort the simulation if the lock is held by another thread. If a thread executes unlock, then we
first assert that the lock is held by the invoking thread and then set it to FREE.

3.5 Rewrite Rules

Here, we formalize the general translation informally described above. This is done using rewrite
rules defined over the syntax of bounded multi-threaded programs. Let P be a bounded multi-
threaded program and P

seq

k,ρ
be a sequentialized program for P . P seq

k,ρ
is obtained from P by applying

the translation �·�k,ρ defined by the rewrite rules given in Figure 8. �P�k,ρ starts by including a
header file lazycseq.h that contains the declarations of the simulation functions for the thread
routines shown in Figure 7; the corresponding definitions are contained in lazycseq.c. This is
followed by the declaration of the auxiliary data structures used by the sequentialization (see
Section 3.1), followed by the declaration of the original global variables, which remains unchanged.
All thread functions are first sequentialized (as discussed in Section 3.3) and then appended to the
program. Finally, the main driver constructed according to ρ is appended (see Figure 5 for the
structure of the main driver with ρ = 〈0, . . . ,n〉).

The translation rules for most statement types are straightforward. Slightly more involved are
the rules for the if- and (labeled) skip-statements where the G-macros are inserted and the (la-
beled) concurrent statements where the G-macros are inserted (both as sketched in Section 3.3).
Note that the labels �1, �2 and � denote the largest numerical label up to the point where the cor-
responding statements textually occur in the program.

Figure 2(c) shows the result of the translation map �·�k,ρ of Figure 8 applied to the bounded
multi-threaded program shown in Figure 2(b).

4 CORRECTNESS

In this section, we give a formal proof of correctness of the lazy sequentialization schema defined
in Section 3. Specifically, we prove the following theorem:

Theorem 4.1 (Correctness). Let P be a bounded multi-threaded program, ρ be a schedule of P ,

and k be a positive integer. P fails an assertion through a k-round-robin execution w.r.t. ρ if and only

if �P�k,ρ fails an assertion.

Proof Strategy. We prove the two directions of Theorem 4.1, respectively, in Section 4.1 and
Section 4.2. For the forward direction, we prove a key property in Lemma 4.1: Any k-round-robin
execution of P w.r.t. ρ can be simulated by the sequentialized program �P�k,ρ . For the backward
direction, we also prove a key property in Lemma 4.3: Every execution of �P�k,ρ ending with
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Fig. 8. Rewrite rules for the lazy sequentialization. Note that the labels �1, �2, and � denote the largest

numerical label up to the point where the corresponding statements textually occur in the program.

a relevant configuration, i.e., a configuration that is equivalent to a non-error P configuration,
captures a (prefix of a) k-round-robin execution of P w.r.t. ρ. Before doing so, let us introduce some
assumptions and notations that will allow us to simplify the presentation.

Assumptions and Notations. Henceforth, we assume that P is a bounded multi-threaded program
with thread functions f0, . . . , fn , and that the local variables of all fi ’s and the global variables of
�P�k,ρ have distinct names; this is without loss of generality, because variables can be renamed.

We use P̂k,ρ to denote �P�k,ρ with (i) the while-loop of the main driver unrolled k times (once
for each round), (ii) all n+ 1 thread simulation functions inlined into the main driver, (iii) the local
variables of �P�k,ρ lifted to global variables, and (iv) the initial statements of the main-function
initializing these lifted variables with nondeterministic values. Note that the resulting program is
syntactically well-formed, because the local variables have different names by assumption, and be-
cause the inlining renames apart the numerical labels and updates the jump targets. Note further
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Fig. 9. PC mapping example. (a) shows part of the bounded multi-threaded program P (see Figure 2 for the

full program); (b) shows the corresponding part of the inlined sequentialized program P̂k,ρ for k = 2, with the

code for the first (respectively, second) round on the left (respectively, right). Injected control code is shown

in grey; note that the inlining process updates the labels used in the J-macros but leaves the values used

in the guards unchanged. Corresponding labels and statements are shown on the same line. ➀, ➁, and ➂

denote program counters (which are distinct from the numerical labels). We have pc_mapP,k (➀, 1) = ➁ and

pc_mapP,k (➀, 2) = ➂, corresponding to the first (respectively, second) occurrence of the relevant statement

b:=(c>0); in P̂k,ρ . Note that a similar mapping is also used in Lazy-CSeq to trace counter-examples back

to the original (unbounded) program.

that P̂k,ρ is semantically equivalent to �P�k,ρ , because the initialization of the lifted variables cap-
tures the semantics of local variables and because the inlining happens after the macro expansion,
the numerical labels used in J- and G-macros are renamed consistently, so the simulation remains
unchanged; in fact, after the initialization phase P̂k,ρ and �P�k,ρ can execute the same transitions.

Since P̂k,ρ consists by definition only of one thread that has no local variables, the only meaningful

components of a configuration of P̂k,ρ are the shared variable valuation and the program counter.

Thus, we simplify the notation introduced in Section 2.2 and denote a configuration of P̂k,ρ simply

as ĉ = 〈ŝh, p̂c〉, where ŝh is a shared variable valuation, and p̂c is a program counter.
In the proofs, we need to match configurations of P with those of P̂k,ρ . We recall that when

transforming P into �P�k,ρ each thread function of P is replaced with the corresponding simulation
function, which is in turn obtained by replacing each original statement of the thread function with
a block of statements that contains either the original statement or, in case of a call to a thread
routine, the call to the corresponding thread simulation stub (see Figure 8 for details). We refer
to these statements as the relevant statements of �P�k,ρ . Due to the inlining of the simulation

functions in the translation from �P�k,ρ to P̂k,ρ , each relevant statement is copied k times in P̂k,ρ ,
once for each round of computation; note that in the inlining the single return-statement in each
thread function is replaced by a skip-statement. We still refer to such copies as relevant statements.
We define a map pc_mapP,k (pc, r ) that relates statements of P with the corresponding relevant
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statements of P̂k,ρ as follows: For a program counter pc of a thread function f of P and round
number r ∈ [0,k − 1], pc_mapP,k (pc, r ) denotes the program counter of the relevant statement of

P̂k,ρ that (1) corresponds to the statement at program counter pc and (2) occurs in the r th inlined
copy of f . Figure 9 gives an example.

A configuration c of P and a configuration ĉ of P̂k,ρ are equivalent if the valuations of the vari-
ables in P coincide in c and ĉ , and the valuation of the auxiliary control variables in ĉ is consistent

with c , i.e., the valuation of active is consistent with the threads that are present in c , the valu-
ation of ct identifies the currently enabled thread, the valuation of pc[i] matches the numerical
label at the program counter in c for each thread i except possibly for the enabled one, and the
program counter of ĉ corresponds to that of the enabled thread in c . Formally:

Definition 4.2 (Equivalent Configurations). Let P be a bounded multi-threaded program with
shared variablesV and local variables Li for each thread function fi whereV and all Li are pairwise
disjoint, and c = 〈sh, en, {thi }i ∈I 〉 is a configuration of P with thi = 〈localsi ,pci 〉 for any of the active

threads i ∈ I ⊆ [0,n]. Further, let k > 0 and ĉ = 〈ŝh, p̂c〉 be a configuration of the sequentialized
program P̂k,ρ . For a round number r ∈ [0,k − 1], c is r -equivalent to ĉ , denoted c ≡r ĉ , if the
following holds:

(1) (a) ŝh(v ) = sh(v ) for all v ∈ V , and (b) ŝh(l ) = localsi (l ) for all i ∈ [0,n] and l ∈ Li ;
(2) for any i ∈ [0,n], ŝh(active[i]) = true iff i ∈ I ;
(3) ŝh(ct) = en;
(4) for any i ∈ (I \ {en}), ŝh(pc[i]) = �P (pci );
(5) p̂c = pc_mapP,k (pcen, r ).

A configuration ĉ = 〈ŝh, p̂c〉 of P̂k,ρ is relevant if there exists a program counter pc of P and a
round number r ∈ [0,k − 1] such that p̂c = pc_mapP,k (pc, r ), i.e., p̂c is the program counter of a
relevant statement. Note that if c ≡r ĉ , then ĉ must be relevant.

For the sake of simplicity, in the rest of the section, we fix a schedule ρ = 〈0, . . . ,n〉. Note that
any other schedule could be accommodated by renaming the functions.

Let π = c0 →P c1 →P · · · →P cm , with ci = 〈shi , eni ,Ai 〉 and Ai = {〈locals
j
i , pc

j
i 〉j ∈Ii

}, be a

k-round-robin execution (w.r.t. ρ) of P , where locals
j
i is the valuation of the local variables of the

jth thread after the ith execution step.
We can identify a new round in π by the fact that the identifier eni of the enabled thread in

configuration ci is smaller than its counterpart eni−1 in the predecessor configuration ci−1. We
thus define a function roundπ (i ) that describes the minimal round-robin bound for each prefix of
π (i.e., the minimal number of rounds required to reach the last configuration ci in this prefix).
Formally, roundπ : [0,m]→ [0,k − 1] is defined as:

roundπ (i ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

0 if i ∈ [0, 1];

roundπ (i − 1) + 1 if i ∈ [2,m] and eni < eni−1;

roundπ (i − 1) otherwise (i.e., i ∈ [2,m] and eni ≥ eni−1).

We also use a function csπ (i ) to denote the numerical label at which the enabled thread in
configuration ci will context switch out (this is explicitly captured by the value of cs during the
simulation of P by P̂k,ρ ), or in the case of the last context of π where no context switch will occur,
the largest numerical label of the thread function fenm

enabled in the final configuration cm , i.e.,

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 1. Publication date: December 2021.



Bounded Verification of Multi-Threaded Programs via Lazy Sequentialization 1:19

�max
P

( fenm
). Formally, csπ : [0,m]→ N is defined as follows:

csπ (i ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

�max
P

( fenm
) if i =m;

�P (pceni

i+1) if i < m and eni � eni+1;

csπ (i + 1) otherwise.

4.1 Simulation of P Executions by P̂k,ρ

Here, we prove that every k-round-robin execution of P w.r.t. ρ can be simulated by P̂k,ρ , and thus

also by �P�k,ρ . Intuitively, starting from equivalent configurations, P and P̂k,ρ execute the “same”

statements and reach equivalent configurations. However, since P̂k,ρ contains additional control

code, each transition of P may correspond to a sequence of transitions of P̂k,ρ . In our proof (by
induction), we consider each of those sequences as split into two parts: The first part corresponds
to the simulation in P̂k,ρ of a single statement in P , which may end at a non-relevant configuration,

and a (possibly empty) second part that reaches the next relevant configuration in P̂k,ρ .

Lemma 4.1. Let P be a bounded multi-threaded program with thread functions f0, . . . , fn , ρ =
〈0, . . . ,n〉, k be a positive integer, and c0 be an initial configuration of P . For every k-round-robin

execution

π = c0 →P c1 →P · · · →P cm

of P w.r.t. ρ, there is an initial configuration ĉI of P̂k,ρ and an execution

π̂ = ĉI �
P̂k,ρ

ĉ0 �
P̂k,ρ

ĉ1 �
P̂k,ρ

· · · �
P̂k,ρ

ĉm

of P̂k,ρ such that ci ≡roundπ (i ) ĉi , for every i ∈ [0,m].

Proof. For i ∈ [0,m], let ci = 〈shi , eni ,Ai 〉 with Ai = {〈localsh
i , pch

i 〉}h∈Ii
, and ĉi = 〈ŝhi , p̂ci 〉.

The proof is by induction over j ∈ [0,m] for the following stronger property P (j ):

There exists an initial configuration ĉI and an execution

π̂j = ĉI �
P̂k,ρ

ĉ0 �
P̂k,ρ

ĉ1 �
P̂k,ρ

· · · �
P̂k,ρ

ĉ j

of P̂k,ρ such that for i ∈ [0, j], (a) ci ≡roundπ (i ) ĉi , (b) ŝhi (cs) = csπ (i ), and

(c) ŝhi (pc[eni]) ≤ �P (pci ).

Note that P (m) is stronger than the lemma’s statement, because it requires that the valuation of
the auxiliary variable cs in π̂ at configuration ĉi must coincide with the numerical label at which
the thread enabled at ci will context switch out next in π , and moreover, the maximum numerical
label that precedes the current program counter must be at least as large as the label stored in the
array pc.

Base case: We prove that P (0) holds by showing the existence of two configurations ĉI and ĉ0

such that π̂0 = ĉI �
P̂k,ρ

ĉ0, c0 ≡roundπ (0) ĉ0, ŝh0 (cs) = csπ (0), and ŝh0 (pc[en0]) ≤ �P (pc0).

Since P̂k,ρ contains no local variables, it has a unique initial configuration ĉI with the following
properties: by construction (1) the valuations in ĉI of the shared variables V of P coincide with
those in c0; (2) the valuation of active[0] is true, and the valuation of active[i] is false for
any i ∈ [1,n] (reflecting the fact that the only active thread is the one corresponding to the main
procedure of P ); (3) the valuation of variable ct (used to keep track of the identifier of the thread
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under simulation) is 0; and (4) the valuation of all the elements of the array pc is also 0 (which is
the numerical label of the first statement of each thread function). Thus, for c0 and ĉI parts (1.a)
and (2)–(4) of Definition 4.2 hold.

We also observe that for c0 and ĉI parts (1.b) and (5) of Definition 4.2 may not hold instead. In
fact, for part (1.b), the local variables of P have nondeterministic values in c0 but evaluate to 0 in
ĉI (since they are mapped to global variables in P̂k,ρ ). For part (5), the program counter of P̂k,ρ is
positioned at the beginning of the main driver rather than at the beginning of the sequentialized
main procedure (i.e., the first thread simulation function).

We now describe an execution of P̂k,ρ from ĉI to a configuration ĉ0 where parts (1.b) and (5) also

hold. Recall that at the beginning of the main driver of P̂k,ρ the variables corresponding to the local
variables of P get assigned with nondeterministic values. Here, we choose the same c0 values for
these variables, which allows us to establish part (1.b) in an intermediate configuration ĉ ′0. From
ĉ ′0, we then execute the first thread simulation block corresponding to the first if-statement in the
first loop iteration of the main driver of �P�k,ρ , where ct is 0 (see Figure 5 again), and pick the
transition that sets cs to csπ (0), which is always possible, as we can choose any nondeterministic
value in the range of the thread labels of the main procedure of P . After that, the code of the inlined
sequentialized main function gets executed, and the control reaches the macro J(0,1) guarding
the first statement. Here, the condition of the if-statement is evaluated to false and the control
moves to the first statement. We take this configuration as ĉ0. Since the original variables (those
from P ) are not affected by the execution just described and, since roundπ (0) = 1, we get that

c0 ≡roundπ (0) ĉ0 and ŝh0 (cs) = csπ (0) hold. Finally, ŝh0 (pc[en0]) ≤ �P (pc0) holds true, because

ŝh0 (pc[en0]) = 0, which is the minimal numerical label within any tread function.

Inductive step. For j ∈ [1,m], assume that P (j − 1) holds. To prove that P (j ) also holds, we show

the existence of a configuration ĉ j such that ĉ j−1 �
P̂k,ρ

ĉ j , and (a) c j ≡roundπ (j ) ĉ j , (b) ŝhj (cs) =

csπ (j ), and (c) ŝhi (pc[enj]) ≤ �P (pcj ).

We first consider the cases when the statement executed along c j−1 →P c j , i.e., P (pc
enj−1

j−1 ), is not

a return-statement. We break the execution of P̂k,ρ into two parts ĉ j−1 �
P̂k,ρ

ĉ and ĉ �
P̂k,ρ

ĉ j .

The first part of the simulation handles the update of P ’s variables according to the execution of
statement P (pc

enj−1

j−1 ). This establishes parts (1) and (2) of Definition 4.2. The second part of the

simulation takes the control to the next relevant configuration of P̂k,ρ if this is not already the
case. Here, we possibly update auxiliary variables by the driver and execute the J- and G-macros.
This establishes the remaining parts of P (j ). For the second part, we proceed by distinguishing on
whether the transition c j−1 →P c j involves a context switch (i.e., whether enj−1 � enj ) or not.

Henceforth, pc and pc′ denote, respectively, the values of the program counter of thread tenj−1

of P in configurations c j−1 and c j , i.e., pc = pc
enj−1

j−1 and pc′ = pc
enj−1

j (recall that tenj−1 is the enabled
thread in c j−1). Moreover, pccs denotes the value of the program counter of the same thread when
the next context switch actually occurs. Note that pc < pc′ ≤ pccs must hold, since the control in
bounded programs only moves forward. Similarly, we define p̂c, p̂c

′, and p̂ccs as the corresponding

program counters in P̂k,ρ , i.e., p̂c = pc_mapP,k (pc, roundπ (j−1)), p̂c
′
= pc_mapP,k (pc′, roundπ (j−

1)), and p̂ccs = pc_mapP,k (pccs , roundπ (j − 1)). Note that p̂c < p̂c
′ ≤ p̂ccs also holds, in fact our

translation preserves the program order within the same inlined copy of each thread function.
Note further that p̂c = p̂cj−1 by the inductive hypothesis.

Proof of the first part: (̂c j−1 �
P̂k,ρ

ĉ): Let stmt = P (pc), i.e., the statement executed in the tran-

sition c j−1 →P c j . We proceed by case inspection over the syntactic type of stmt.
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Thread creation and joining. If stmt is a create-statement, i.e., a statement of the form
t := create fi (e ), then the initial configuration of the newly created thread, which has
identifier i , is added to the pool of active threads in c j−1. By construction, in P̂k,ρ the
create-statement is transformed into the call seq_create(e, i), followed by the assign-
ment t := i (see Figure 8). Note that the call updates active[i] to true (see Figure 7), and
since create fi (e ) evaluates to i , we get that parts (1) and (2) of Definition 4.2 hold for ĉ
and c j w.r.t. thread i .

If stmt is a join-statement with the thread identifier tid as argument, then the thread
identified by tid must already have terminated its execution—otherwise, P could not have
made its transition into c j . Hence, the configuration for the terminated thread must al-
ready be removed from c j−1, and by the inductive hypothesis active[tid] must be false.

Therefore, P̂k,ρ transitions silently through the assume-statement in seq_join (see Fig-
ure 7), thus complying with the requirement of part (2) of Definition 4.2 for the thread tid.

Since all the components of the configuration that are not explicitly mentioned in the
two cases above stay unchanged along both ĉ j−1 �

P̂k,ρ

ĉ and c j−1 →P c j , by the given

arguments and the inductive hypothesis, we get that parts (1) and (2) of Definition 4.2
hold for ĉ and c j .

Lock operations. If stmt is a lock-statement with a mutex m as argument, then P can
make a transition only if m is available (i.e., not held by any other thread), and thus m
evaluates to enj−1 in configuration c j . By the inductive hypothesis,m must be free in c j−1

and have the special value FREE in ĉ j−1, and ŝhj−1 (ct) = enj−1. Thus, when P̂k,ρ executes
seq_lock, which simulates lock (see Figure 7), it transitions through the assert-and
then the assume-statement, and finally setsm to the value of enj−1.

If stmt is an unlock-statement with a mutex m as argument, then m is free in config-
uration c j . The equivalent operation is done in P̂k,ρ by the corresponding seq_unlock
function (see Figure 7) that assigns FREE to m. If stmt is an init- or destroy-statement,
then a similar argument holds as above.

In all cases, the transition of P̂k,ρ performs the same memory update as P does and
thus since everything else, except the program counter, is unchanged, by the inductive
hypothesis again parts (1) and (2) of Definition 4.2 hold for c j and ĉ .

Remaining statements. In all the other cases, stmt and P̂k,ρ (p̂c) are identical, because by
the inductive hypothesis p̂c points to the relevant statement of �stmt�k,ρ , i.e., past any
inserted J-macros (see Figure 8). Since c j−1 and ĉ j−1 are equivalent, also by the inductive

hypothesis, the common variables of P and P̂k,ρ will thus hold the same values in P and

P̂k,ρ after executing stmt.3 Since everything else except the program counter is unchanged,
by the inductive hypothesis parts (1) and (2) of Definition 4.2 hold for for c j and ĉ .

Proof of the second part (̂c �
P̂k,ρ

ĉ j ): In the second part of the simulation, we need to show that

the control moves to the next relevant configuration ĉ j of P̂k,ρ , if it is not already there, and
thatP (j ) holds. For this, we recall that for ĉ and c j , parts (1) and (2) of Definition 4.2 hold, and,
since the variables involved in these parts are not updated along ĉ �

P̂k,ρ

ĉ j , they continue

to hold up to ĉ j . We proceed by distinguishing on whether the transition c j−1 →P c j involves
a context switch or not. Before this, we state two key properties:

3Nondeterministic transitions of P due to the occurrence of the ∗ operator can be matched by transitions in P̂k,ρ where ∗
yields the same value as in P .
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A. The original code of the P thread functions, modulo the thread routines, can be obtained
from the corresponding thread simulation functions by removing the injected J- and G-
macros (see Figure 8). This can be easily shown by induction on the grammar given in
Figure 3.

B. All the G-macros possibly executed along ĉ �
P̂k,ρ

ĉ j are indeed immaterial. In fact, any

such G-macro consists of a single assume-statement checking cs > �, where � is �P (pc′)−1
if the statement at pc′ is a concurrent statement (in this case, there would be a numerical
label between the G-macro and the statement) and �P (pc′) otherwise (see Figure 8). Note
that the numerical label corresponding to the next context switch happening along π ,
identified by csπ (j − 1), appears in the code after the occurrence of the G-macro. Thus, �

must be strictly less than csπ (j−1). Since ŝhj−1 (cs) = csπ (j−1) by the inductive hypothesis,

and ŝh(cs) = ŝhj−1 (cs), we get that cs > � must hold at ĉ .
We denote with ĉ ′ the configuration reached along ĉ �

P̂k,ρ

ĉ j after the execution of all

the possibly injected G-macros. Since such G-macros are immaterial (Property B), and along
ĉ j−1 �

P̂k,ρ

ĉ none of the auxiliary variables ct, cs, and pc are updated, we get that their

valuations in ĉ j−1 and ĉ ′ are the same. In the remaining part of the proof, we distinguish on
whether a context switch occurs when moving from c j−1 to c j along π .
Without context switch. In this case enj−1 = enj , which entails that csπ (j ) = csπ (j − 1),

and �P (pc) ≤ �P (pc′) < csπ (j ).
If the statement at pc′ is not concurrent, then we set ĉ j = ĉ ′. Since the valuations of

ct, cs, and pc are the same in ĉ j−1 and ĉ ′, by the inductive hypothesis, we also get that
parts (3)–(4) of Definition 4.2 hold for c j and ĉ j . Moreover, by Property A and the inductive
hypothesis, we have that also part (5) of Definition 4.2 holds for c j and ĉ j .

If the statement at pc′ is concurrent, then from ĉ ′, we execute the injected J-macro,
which we now show to be immaterial as well: The first disjunct of the if-condition,
i.e., pc[ct] > �P (pc′), does not hold, since (i) by part (c) of the inductive hypothesis

ŝhj−1 (pc[enj−1]) ≤ �P (pcj−1) and ŝhj−1 (ct) = enj−1 both hold, (ii) pc and ct are not
updated, and (iii) in the textual order the numerical labels can only increase and the con-
trol can only move forward; the second disjunct of the if-condition, i.e., �P (pc′) ≥ cs, also
holds false, since we assumed that no context switch occurs at this time, and similarly to
as observed in Property B, the numerical label corresponding to the concurrent statement

must be smaller than ŝhj (cs).
Regardless of the type of statement addressed by pc′, the arguments above also entail

ŝhj (pc[enj]) ≤ �P (pcj ). Moreover, ŝhj (cs) = csπ (j−1) holds by inductive hypothesis, and

csπ (j −1) = csπ (j ), since no context switch happens. Thus, we get ŝhj (cs) = csπ (j ), which
concludes the proof in this case.

With context switch. As argued in Section 2.2, we only consider runs π where context
switches happen at concurrent statements or when a thread terminates. Note that the
latter case will be handled further below.

Let stmt′ be the concurrent statement addressed by pc′. From Figure 8, we can see that
stmt′ is preceded verbatim by a numerical label and an injected J-macro. The second dis-
junct of the if-condition in this J-macro, i.e., �P (pc′) ≥ cs, holds because enj−1 � enj

(since a context switch occurs) and thus �P (pc′) = csπ (j − 1). This causes the control to
jump to the next numerical label, and for the same reason, all subsequent J-macros jump
to the next numerical label until the control moves back to the main driver code (see Fig-
ure 4), right after the inlined call to the thread simulation function of thread tenj−1 at round
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roundπ (j − 1). Let ĉ ′′ denote the reached configuration. Observe that along the run from
ĉ ′ to ĉ ′′ no variable is updated.

From ĉ ′′, variable pc[enj−1] is set to cs and the control moves to the next block of
the main driver corresponding to the simulation of the thread enabled in configuration c j .
We now argue that in the intermediate thread simulation blocks, if any, (i) none of their
relevant statements is executed, and (ii) the values of pc will not be modified up to con-
figuration ĉ j except pc[enj]. Note that, since enj � enj−1, the inductive hypothesis and
part (ii) of the claim above ensure that part (4) of Definition 4.2 also holds for c j and ĉ j .
To prove the claim, we note the following: The block corresponding to inactive threads
are simply skipped. For a block corresponding to an active thread ti , cs is (nondetermin-
istically) set to the value of pc[i], and this causes the control to jump in multiple hops
over the J-macros of the inlined thread simulation function: The first disjunct holds up to
the numerical label pc[i], and the second disjunct holds in the remaining part of the code.
Note that for all these blocks the values of all variables except for ct remain unchanged.

When the control reaches the block corresponding to thread tenj
, i.e., the thread enabled

in configuration c j , ct is set to enj . Then, cs is set to csπ (j ); this is possible because pc[enj]

evaluates to �P (pc
enj

j−1) by the inductive hypothesis (specifically, part (4) of Definition 4.2),

and by definition csπ (j ) > �P (pc
enj

j−1), since in the run π starting from c j at least one con-
current statement of thread tenj

is executed. After that, similarly to the above, the control
jumps over the J-macros in the inlined copy of the simulation function of thread tenj

at

round roundπ (j ), up to the J-macro at label �P (pc
enj

j−1). Here, the if-condition evaluates to

false (recall that pc[enj] = �P (pc
enj

j−1) and cs > �P (pc
enj

j−1)), hence the control moves to
the associated relevant statement. We pick the reached configuration as ĉ j .

We now argue that P (j ) holds. First, as already observed, parts (1), (2), and (4) of Def-
inition 4.2 hold. Part (3) is ensured by the above assignment to ct. By the inductive
hypothesis and the reasoning above, we get that the program counter of ĉ j is exactly
pc_mapP,k (pc

enj

j , roundπ (j )), and thus also part (5) holds. Therefore, Definition 4.2 holds
for c j and ĉ j , and thus part (a) of P (j ) is shown. From the above assignment to cs, we

immediately get that part (b) of P (j ) also holds and thus in P̂k,ρ the simulation of a con-
text switch starts from the J-macro at the numerical label stored in cs. Moreover, since
enj−1 � enj , we get pc

enj

j−1 = pc
enj

j , and as noted above pc[enj] = �P (pc
enj

j−1), thus also
part (c) of P (j ) holds and we are done with the general case.

To conclude the proof it remains to show that P (j ) also holds when pc points to a return-
statement. When this is the case, the control in ĉ j−1 is at the end of the inlined code of a thread
simulation function. Since the inlining replaces the return-statement with a skip-statement, the
control immediately moves back to the code of the main driver (see Figure 4), right after the inlined
call to the thread simulation function of thread tenj−1 at round roundπ (j − 1). From this point on,

the behavior of P̂k,ρ is as from configuration ĉ ′′ in the “with context switch” case above, except that
active[enj−1] is set to false but this is required to restore part (2) of Definition 4.2 (thread tenj−1

has terminated). Thus, P (j ) holds in this case as well. �

We now show the forward direction of Theorem 4.1. For a configuration c of P and a config-
uration ĉ of P̂k,ρ such that c ≡r ĉ , we have that every assert-statement of P fails from c if and
only if the same assert-statement fails from ĉ . Note that assert-statements are left unchanged
by our translation (see Figure 8). Therefore, from Lemma 4.1, we get that the forward direction of
Theorem 4.1 holds.
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Corollary 4.2. Let P be a bounded multi-threaded program, ρ be a schedule of P , and k be a

positive integer. If P fails an assertion through a k-round-robin execution w.r.t. ρ, then �P�k,ρ fails an

assertion.

4.2 Simulation of P̂k,ρ Executions by P

Here, we show that each execution π̂ of P̂k,ρ ending with a relevant configuration can be simulated
by a k-round-robin execution of P that matches all the relevant configurations of π̂ with equivalent
configurations according to Definition 4.2. Using this result, we then show the completeness of our
approach.

Lemma 4.3. Let P be a bounded multi-threaded program, ρ = 〈0, . . . ,n〉, and k be a positive integer.

For every execution

π̂ = ĉI �
P̂k,ρ

ĉ0 �
P̂k,ρ

ĉ1 �
P̂k,ρ

· · · �
P̂k,ρ

ĉm

of P̂k,ρ such that ĉI is initial and ĉ0, ĉ1, . . . , ĉm are all the relevant configurations of π̂ , there is a

k-round-robin execution of P w.r.t. ρ

π = c0 →P c1 →P · · · →P cm

such that c0 is initial, and c j ≡roundπ (j ) ĉ j , for every j ∈ [0,m].

Proof. For j ∈ [0,m], let ĉ j = 〈ŝhj , p̂cj 〉, and c j = 〈shj , enj ,Aj 〉 with Aj = {〈localsh
j , pch

j 〉}h∈Ij
.

The proof is by induction over j ∈ [0,m] for the following stronger property Q (j ):

There is an execution πj = c0 →P c1 →P · · · →P c j with c0 an initial configu-

ration such that for every i ∈ [0, j], denoting ri = ŝhi (r), (a) ci ≡ri
ĉi , and (b)

ri ≥ roundπj
(i ).

Base case: We choose the initial configuration c0 such that the values of the common variables
coincide with those of ĉ0. This is possible because by construction all variables in P become global
in P̂k,ρ and are initialized as in P : Those corresponding to the shared variables are assigned as in
P while those corresponding to the local variables are initialized with nondeterministic values at
beginning of the main driver before reaching the first relevant configuration.

We now show that Q (0) holds for c0 and ĉ0.
First, we recall that the auxiliary control variables of an initial configuration of P̂k,ρ are by

construction (see Figure 8) initialized as follows: (1) the valuation of active[0] is true while that
of active[i] is false, for every i ∈ [1,n], (2) variable ct is set to 0, and (3) all the elements of
array pc are set to 0, which is the numerical label of the first statement in any thread function.
Thus, parts (1)–(4) of Definition 4.2 hold for configurations c0 and ĉI .

Now, we argue that the first relevant statement simulated along π̂ must correspond to the first
statement in the main thread:

(1) The first relevant statement along π̂ must be in the thread simulation function of the main
thread. This is because active[i] is false for i � 0 in ĉI and can be set to true only by
simulating a thread creation statement, but this is not possible being ĉ0 the first relevant
configuration.

(2) Moreover, this first statement corresponds to the first statement of the main thread in P . To
see this, observe that in P̂k,ρ the simulation of the main thread starts in the first simulation
block of this thread where cs > pc[0] holds. In fact, if cs = pc[0], then the if-conditions
of the J-macros in the corresponding simulation function are always true, which causes the
control to return to the main driver without simulating any relevant statement. Also note
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that when this is the case, the value of pc[0] stays unchanged. As soon as cs > pc[0]
holds, the if-condition of the first J-macro evaluates to false (since each thread simulation
function starts with a statement labeled with the numerical label 0) and the control moves
to the first relevant statement that, by construction, must correspond to the first statement
of the main thread in P .

From the observations above, part (5) of Definition 4.2 holds for c0 and ĉ0, and our choice of
r0. Moreover, since ct is set to 0 before entering a block corresponding to the main thread (see
Figure 4) and the other variables except for cs stay unchanged along ĉI �

P̂k,ρ

ĉ0, the other parts

of Definition 4.2 hold as well and thus part (a) of Q (0) holds. Also, r0 ≥ 0 by definition, thus part (b)
of Q (0) holds, which concludes the base case.

Inductive step. For j ∈ [1,m], assume that Q (j − 1) holds. The rest of the proof has many argu-
ments in common with that of Lemma 4.1. From now on, we will focus on the additional arguments
while recalling the rest from the other proof.

Let stmt be the current statement of the enabled thread in c j−1, i.e., stmt = P (pc
enj−1

j−1 ).

We choose c j as follows: By the inductive hypothesis, we get c j−1 ≡r j−1 ĉ j−1 and thus p̂cj−1 =

pc_mapP,k (pc
enj−1

j−1 , r j−1). As detailed in the first part of the proof of Lemma 4.1, the block of code

corresponding to stmt in P̂k,ρ performs a simulation of stmt. According to our translation (see
Figure 8), this code must be executed along ĉ j−1 �

P̂k,ρ

ĉ j , which leads to the conclusion that stmt

is executable from c j−1. Denote c j the configuration the configuration obtained from c j−1 after
the execution of stmt that captures a possible change of the enabled thread according to ĉ j , i.e.,

c j−1 →P c j where enj = ŝhj (ct).
To prove that Q (j ) holds for such a choice of c j , we need to show that c j ≡r j

ĉ j and r j ≥
roundπj

(j ).
We start with the former but we postpone the case in which stmt is a return statement to later

in the proof. The fact that c j−1 ≡r j−1 ĉ j−1 and stmt can be executed puts us into the same condition
as in the first part of the proof of Lemma 4.1. Thus, we can immediately see that parts (1) and (2) of
Definition 4.2 hold for c j and the configuration ĉ reached after the simulation of stmt. However, the
execution from ĉ to ĉ j will not update any of the variables involved in those two parts. Therefore,
parts (1) and (2) of Definition 4.2 also hold for c j and ĉ j .

The block of code executed along ĉ �
P̂k,ρ

ĉ j takes care of positioning the control to the next

relevant statement at ĉ j . According to our translation schema as well as the description given in

the second part of the proof of Lemma 4.1, while positioning the control, P̂k,ρ may or may not go
through the main driver.

We consider first the case when the control stays within the same inlined copy of the thread
simulation function. All the cases of how the execution can evolve are exactly the same as those
detailed in the second part of the proof of Lemma 4.1. This is because Property A holds, and the G-
macros are immaterial (otherwise, ĉ j could not be reached from ĉ j−1). Thus, part (5) of Definition 4.2
also holds for c j and ĉ j . Moreover, the variable ct and the array pc are not modified, since they
are updated only in the main driver and therefore have the same valuation as in ĉ j−1. This is
consistent with the fact that there is no change of context along c j−1 →P c j (by our choice for enj )
and the program counters of the threads, other than the enabled thread, stay unchanged. Hence,
the remaining parts of Definition 4.2 hold as well for c j and ĉ j , and therefore, c j ≡r j

ĉ j holds in
this case.

We handle the remaining cases, i.e., when the control passes through the main driver before
positioning at the next relevant statement, mainly as in the second part of the proof of Lemma 4.1.
However, there are two main differences that we will discuss in detail here.
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The first difference is the following: In the proof of Lemma 4.1, when defining the execution
of P̂k,ρ , we choose to set variable cs to csπ (j − 1) before entering the inlined code of the thread
simulation function, and we prove that when the control goes back to the main driver, cs has
the value of the label of the concurrent statement where the context switch occurred. Here, we
cannot make any assumptions about the value of cs, as it is assigned with a nondeterministic
value. However, we now show that this property indeed holds along any run of P̂k,ρ regardless

of the value of cs. Let us consider again when the control in P̂k,ρ is right after the execution
of the simulation code of stmt. As detailed in the proof of Lemma 4.1, before exiting the inlined
thread simulation function, we possibly execute a sequence of G-macros before the first J-macro
is executed and the if-condition of this J-macro evaluates to true, because the associated label �
is not smaller than the value of cs. Also, according to our translation (see Figure 8), such G-macros
ensure that when the first J-macro is executed, the value of cs must not be strictly less than �.
Thus, cs must evaluate exactly to �.

The second difference is that the control after leaving a thread simulation block may also enter
a following block (corresponding to a lager value of r) containing the code of the same thread
simulation function. When this happens, we use the same arguments given in the second part of
the proof of Lemma 4.1, in relation to entering and exiting the blocks of code of the thread simu-
lation functions without executing any relevant statement. Thus, we have that when the control
reaches the next relevant statement, all the control variables except for r (which is increased) stay
unchanged, and in all the cases, we conclude that parts (3) and (4) of Definition 4.2 also hold for c j

and ĉ j .
The case when stmt is return can be argued as in the proof of Lemma 4.1 with addition of the

above considerations, which concludes the proof that c j ≡r j
ĉ j .

We now show part (b) of Q (j ), i.e., r j ≥ roundπj
(j ). We first recall that along any execution of

P̂k,ρ (see the main driver code in Figure 5):

• r is first initialized to 0 and then is only incremented at each iteration of the while-loop;
• ct is assigned with the thread identifier before entering the code of the corresponding thread

function;
• in each loop iteration thread simulation functions are called by increasing thread identifiers.

As first consequence, in general r j ≥ r j−1 holds. Further, if enj < enj−1, since by definition enj =

ŝhj (ct) and by the inductive hypothesis enj−1 = ŝhj−1 (ct), then we also get r j ≥ r j−1 + 1. We now
prove that r j ≥ roundπj

(j ). For this, we distinguish the following two cases:

• if enj ≥ enj−1, by definition, then we get that roundπj
(j ) = roundπj

(j − 1) and roundπj
(j −

1) = roundπj−1 (j − 1); since by the inductive hypothesis r j−1 ≥ roundπj−1 (j − 1), we get that
r j−1 ≥ roundπj

(j ); thus from r j ≥ r j−1, we get that r j ≥ roundπj
(j ) must also hold;

• if enj < enj−1, by definition, then we get that roundπj
(j ) = roundπj

(j − 1) + 1 and again
roundπj

(j − 1) = roundπj−1 (j − 1); since by the inductive hypothesis r j−1 ≥ roundπj−1 (j − 1),
from r j ≥ r j−1 + 1, we get r j ≥ roundπj

(j − 1) + 1; by roundπj
(j ) = roundπj

(j − 1) + 1, we
must thus have that r j ≥ roundπj

(j ) holds also in this case.

This concludes the proof. �

We now show the backward direction of Theorem 4.1. Note that all the assertions in �P�k,ρ

are relevant statements. Furthermore, any failing assertion leads to an error configuration that
ends the execution. Therefore, we can conclude that for each such run, by Lemma 4.3, there is a
corresponding run of P that fails the same assertion (and thus also reaches an error configuration).
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Corollary 4.4. Let P be a bounded multi-threaded program, ρ be a schedule of P , and k be a

positive integer. If �P�k,ρ fails an assertion, then P fails an assertion through ak-round-robin execution

w.r.t. ρ.

5 IMPLEMENTATION

We have implemented our sequentialization in the Lazy-CSeq tool for multi-threaded C programs,
based on our CSeq framework [27], and have used this implementation for an exhaustive evalu-
ation. In this section, we first sketch the underlying framework (see Section 5.1) before we give
more details on the implementation of the tool itself (see Section 5.2).

5.1 The CSeq Framework

Lazy-CSeq is developed within the CSeq framework [27]. The framework builds on ideas from
the original CSeq tool [34] but has been improved and fully re-engineered. It provides support
for quickly developing new sequentialization-based verification tools. It has also been used to
implement the MU-CSeq [87–89, 92] and UL-CSeq [69] tools.

The framework comprises several modules; modules are either translators that implement
source-to-source transformations of C programs (such as function inlining, loop unrolling, or the
rewrite rules given in Figure 8) or wrappers that are used for general-purpose tasks that do not pro-
duce source code. Each tool built within CSeq is identified by a configuration that corresponds to
a sequence of translators followed by a sequence of wrappers. It takes as input the file containing
the source code of the multi-threaded C program to analyze and the list of verification parameters.
The input parameters are passed to the appropriate modules, with the input source file passed to
the first module. The output of each module is passed as input to the following module, and the
output of the last module in this sequence is returned as the analysis result.

In a typical configuration, the first translator is a merger : The input source code is merged with
external sources pulled in by the #include directives. The last translator is typically an instru-

menter, which instruments the output according to the backend tool (as explained below). The
purpose of the subsequent wrappers is to interact with the backend tool and interpret its answer
at the end of the analysis. In particular, we have a cex module that is responsible for tracking back
the counter-example generated by the backend tool on the input source code, and thus output the
counter-example. Figure 10 sketches the configuration for Lazy-CSeq.

Translators run in two steps: First, the input code is parsed to build the abstract syntax tree

(AST), the symbol table, and other data structures; second, the AST is recursively traversed and
un-parsed back into a string that corresponds to the output C code. This mechanism is built on top
of pycparser [7], a parser for C that uses PLY, an implementation of Lex and Yacc. We override
pycparser’s AST-based pretty-printer, so the output code is transformed while visiting the AST.
In particular, the transformation is made on-the-fly by directly changing the output generated by
AST subtree visits rather than altering the structure of the AST itself. We found that string-based
source transformations are more intuitive and easier to learn than source-to-source translation
tools based on term rewrite rules (e.g., DMS [6]). Combined with Python’s flexibility, it is thus
relatively easy to implement complex code transformations quickly.

In addition, the CSeq framework contains reusable program transformation modules that sim-
plify the implementation of analysis tools even further. In particular, it provides a number of
generic program optimizations such as constant propagation and constant folding, and loop and
control flow transformations that simplify the syntactic structure (e.g., normalize loop constructs);
other modules optimize the handling of some concurrent programming idioms (e.g., spin locks).
These modules can be used to progressively simplify the input syntax and thus the complex
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Fig. 10. Configuration sequence of Lazy-CSeq. Double framed boxes denote modules composed of multiple

submodules.

transformations typically occurring later in a configuration. Further modules such as variable re-
naming, function inlining and duplication of thread functions, and loop unrolling can be used to
produce the bounded programs.

Instrumenting the code for a specific backend is in itself a quite simple standalone transforma-
tion undertaken by the instrumentation module. It replaces the primitives for handling nondeter-
minism (that are backend-independent and potentially injected at any point by any module) with
backend-specific statements. This involves three kinds of statements: (1) variable assignment state-
ments to nondeterministic values using nondet_int, nondet_long, and so on, (2) restrictions of
nondeterminism using assume, (3) explicit condition checks using assert. The transformation re-
quires a simple renaming of the function calls or inserting ad hoc functions definition, depending
on whether or not the desired verification backend natively models all of the above. The size of
a backend integration is therefore usually less than 10 lines; however, the CBMC default backend
exploits CBMC’s bitvectors to optimize the representation of the program counters and is thus
more complicated.

5.2 The Lazy-CSeq tool

The Lazy-CSeq tool is a CSeq configuration of 19 modules that can be conceptually grouped into
the following categories (see Figure 10 and Inverso et al. [52] for more details):

(1) the source merging module;
(2) eight simple transformation modules that rewrite the input program in steps into a simplified

syntax;
(3) six translators for program flattening to produce a bounded program;
(4) two modules implementing the sequentialization algorithm (as a direct translation of the

rewrite rules shown in Figure 8) that produce a backend-independent sequentialized file;
(5) standard program instrumentation to instrument the sequentialized file for a specific back-

end;
(6) two wrappers for backend invocation and user report generation or counterexample

translation.

Usage. Lazy-CSeq can be invoked with the command cseq.py -i input.c to analyze the input
file input.c and check for reachable error states determined by an ERROR label, an assertion failure,
or incorrect use of locks, using the default analysis parameters and the default backend. Counterex-
ample generation is disabled by default but can be enabled when using the default backend with
--cex.

The analysis parameters are the loop unwinding bound and the number of rounds. Their default
value is one for both, which can be changed with --unwind k and --rounds k, respectively.
The default backend is CBMC, which can be changed with --backend b, where b is one of the
following:
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• bounded model-checkers: cbmc [23], esbmc [26], llbmc [65], smack [81];
• abstraction-based tools: automizer [46], cpachecker [9], satabs [24];
• symbolic testing tools: klee [15].

Availability and Installation. Lazy-CSeq is available as open source software under BSD license.
The version used in the experimental evaluation can be accessed via the CSeq project homepage
https://github.com/CSeq/Overview (which also contains pointers to other tools developed within
the CSeq framework). More information is available in the README file of the installation package.

6 EVALUATION

In this section, we describe the experimental evaluation of our technique. We state our research
questions (see Section 6.1) before we describe the experimental setup (see Section 6.2). We then give
the detailed results of our evaluation. In particular, we evaluate Lazy-CSeq’s ability to find reach-
able error locations by comparing its performance with different sequential verification backends
to a number of verification tools with built-in concurrency handling. In Section 6.3, we focus on
the widely used SV-COMP benchmark set, while we give a more detailed analysis of Lazy-CSeq’s
performance on several complex benchmarks in Section 6.4.

6.1 Research Questions

With our evaluation, we aim to answer the following research questions:

RQ1 How well does our lazy sequentialization technique (as implemented in the Lazy-CSeq tool)
perform, compared to other concurrency verification approaches?

RQ2 (a) How is its performance affected by the choice of a specific sequential verification backend?
(b) How well do BMC- and CEGAR-based backends, respectively, perform?

RQ3 How well does it scale up to complex verification problems?

We focus on Lazy-CSeq’s performance here, because the software engineering benefits (e.g., quick
prototyping) of using the sequentialization approach in general and the CSeq framework in partic-
ular can only be evaluated by comparing a number of different sequentialization schemas, which is
outside the scope of this article. More specifically, we focus on Lazy-CSeq’s “bug hunting” perfor-
mance, i.e., its ability to find reachable error locations. This is justified by the fact that our schema
is defined for bounded programs only, where the failure to find a reachable error location can be
interpreted as a correctness proof.

6.2 Experimental Setup

Benchmarks. We have evaluated Lazy-CSeq primarily over the benchmark set from the concur-
rency category of the SV-COMP20 software verification competition [8]. The SV-COMP bench-
marks are widely used in the literature to evaluate and compare verification systems, because they
cover the C language well and because they provide a good mix of easy and hard problems. The
concurrency category is further arranged into several sub-categories, which we use to report sum-
maries. The benchmarks cover a wide range of domains, e.g., simple litmus tests for weak memory
models, illustrative examples for the pthread API, mutual exclusion algorithms, concurrent data
structures, or device drivers. Note that we dropped the benchmarks in the ldv-linux-3.14-races
sub-category, because they contain embedded assembly code and cannot be processed by any of
the tools we were using. The remaining set consists of 1,075 concurrent C programs, using POSIX
threads as concurrency model, with a total size of about 157K lines of code, not counting #included
library files. We used the 814 unsafe programs that each contain a single reachable error location.
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For each benchmark, we individually chose the minimal loop unwinding, function inlining, and
context switch bounds, respectively, that are required to expose the error.

Our older LR-CSeq and MU-CSeq tools cannot handle the SV-COMP20 benchmarks, due to some
of the preprocessing steps introduced for the competition. For the comparison with these tools, we
thus use the SV-COMP17 benchmark set, which is slightly smaller.

To answer RQ3, we used three additional complex benchmarks from the domain of lock-free
concurrent data structures. These are “real world” benchmarks in the sense that they were not
specifically designed as concurrency benchmarks, and that the errors were not deliberately in-
jected into the code. We describe these benchmarks in more detail in Section 6.4.

Hardware. For the experiments over the SV-COMP20 benchmarks, we used a dedicated machine
equipped with 128 GB of physical memory and a dual Xeon E5-2687W 8-core CPU clocked at
3.10 GHz with hyper-threading disabled, running 64-bit GNU/Linux with kernel 4.9.95; we also
report again the results of some of our earlier experiments over the SV-COMP17 benchmarks,
which were run on a machine with 16 GB of physical memory and a Xeon E5-2670 2.6 GHz CPU,
running 64-bit GNU/Linux with kernel 2.6.32. We set a 15 GB memory limit and a 1,000s timeout for
each benchmark; however, for the concurrent data structure benchmarks, we used more memory
and larger individual timeouts, as reported in Section 6.4.

Verification Tools. We first compared the performance of different sequential verification back-
ends over the sequentialized programs generated by Lazy-CSeq. In particular, we used two versions
of CBMC [23] (v5.4, with which we achieved the best results, and v5.28, the most recent version),4

a mature BMC tool for C that we used in conjunction with both the default MiniSat [30] (v2.2.1)
and the external Kissat [12] (vSC-2020) SAT solvers; ESBMC [26] (v6.4.0),5 a similar BMC tool we
used in conjunction with the Boolector [74] (v3.2.0) SMT solver; SMACK [81] (v2.4.0),6 a BMC tool
that translates LLVM bitcode into the Boogie intermediate verification language and then uses the
Z3-based (v4.8.3) Corral verifier; CPAchecker [9] (CPA-Seq v1.9),7 a tool for configurable software
verification that supports a wide range of techniques, including BMC, predicate abstraction, and
shape and value analysis and relies on the MathSAT5 [21] (v5.5.4) SMT solver; here, we used both
the BMC and the default predicate abstraction configurations; Ultimate Automizer [46] (v0.1.25),8

an automata-based software model checker that is implemented in the Ultimate software analysis
framework and which uses an .internal development version of the SMTInterpol [19] SMT solver;
and KLEE [15] (v2.2),9 a dynamic symbolic execution engine that is built on top of the LLVM
compiler infrastructure, which we used in conjunction with the STP [39] (v2.3.3) solver. Note that
this set of sequential verification backends includes SV-COMP20 medal winners in the Overall
(CPAchecker, Ultimate Automizer) and FalsificationOverall (CPAchecker, ESBMC) categories, re-
spectively, and thus represents the state-of-the-art in (sequential) C program verification.

We then compared Lazy-CSeq against verification tools with native concurrency handling. In
particular, we (re-) used CBMC, CPAchecker, ESBMC, and SMACK, but relied on their own concur-
rency handling. CBMC uses a partial order representation of concurrent programs [2]. CPAchecker
supports the analysis of concurrent programs with a limited number of threads by using value
analysis or BDD-based analysis. ESBMC analyzes the individual interleavings sequentially [25].
SMACK’s concurrency handling is based on a combination of Corral [62], which implements the

4http://www.cprover.org/cbmc/.
5https://github.com/esbmc/esbmc/releases/tag/v6.4.
6https://github.com/smackers/smack.
7https://cpachecker.sosy-lab.org/CPAchecker-1.9-unix.tar.bz2.
8https://github.com/ultimate-pa/ultimate/releases/tag/v0.1.25.
9https://klee.github.io/releases.
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LR-schema, and Whoop [29], which uses a symbolic pairwise lockset analysis to detect all potential
data races and thus to reduce the number of context switch points that Corral needs to simulate.
In addition, we also used two other well-performing tools that participated in SV-COMP20, Yogar-
CBMC [95, 96], which uses a graph-based CEGAR method that performs abstraction refinement on
the scheduling constraint, and Divine 4 [4], an explicit-state model checker, which uses τ -reduction
[83], a combination of path reduction and partial order reduction, to handle concurrency. Finally,
we also used the three other sequentializations that we implemented with the CSeq framework,10

LR-CSeq (v0.5, using ESBMC v1.20 with Z3 v3.2 as sequential backend) [34], which implements the
LR sequentialization schema; MU-CSeq (v0.4, using CBMC v5.6 with MiniSAT 2.2.1 as sequential
backend) [92], which implements an eager sequentialization based on individual memory location
unwindings; and UL-CSeq [69], which implements a lazy sequentialization for unbounded pro-
grams [70] and uses SeaHorn (v0.1.0) [44] with Z3 (v4.4.0) as backend tool. Similar to the case of
the sequential verification backends, these tools represent the state-of-the-art in (concurrent) C
program verification.

We passed to each tool the minimal loop unwinding, function inlining, and context switch
bounds, respectively, for each individual benchmark, although not all of the tools can take ad-
vantage of this information. We explicitly specified a 32-bit size for integers and set the time and
memory limits as above, but all other options and control parameters were taken from the respec-
tive tool’s SV-COMP20 or default configuration.

6.3 SV-COMP Benchmarks

Tables 1 and 2 summarize the results of our experiments over the SV-COMP20 benchmarks. Since
all benchmarks contain errors that can be reached with the given unwind bounds, misses indicate
an unsound handling of some aspect of the C language by the backend tool. The errors stem from
internal errors, such as parsing errors and assertion violations, and form resource limitations other
than timeouts, both in the model checker and the SAT/SMT solver. Overall, the large and com-
plex sequentialized programs appear to uncover a small number of corner cases in the sequential
backends.

We can see in Table 1 that Lazy-CSeq performs very well if it is combined with the right back-
ends, solving between 805 (using ESBMC) and 812 (using CBMC 5.4) of the 814 benchmarks.
CBMC 5.4 as backend produces only two timeouts, while CBMC 5.28 also produces two internal
errors. ESBMC produces three misses, internal errors, and timeouts, respectively. However, with
other backends, Lazy-CSeq’s performance is not as good. With the other two BMC backends it still
performs reasonably well, with the BMC version of CPAchecker performing almost on par with
CBMC and ESBMC (solving 794 benchmarks with one internal error and 19 timeouts) and outper-
forming SMACK, which solves only 773 benchmarks and produces 32 misses, one internal error,
and eight timeouts. This is in contrast to its performance with non-BMC backends. The default
CPAchecker configuration, in particular, struggles with the complex sequentialized programs and
times out on 329 benchmarks, solving only 483; this is unusual, since the default configuration
typically outperforms the BMC configuration. Both UAutomizer and KLEE perform better than
CPAchecker, solving 627, respectively, 592 benchmarks, with 18 internal errors each.

A comparison with the results in Table 2 shows that Lazy-CSeq performs better than even the
best tools with built-in concurrency handling. CBMC and ESBMC solve between 793 and 800
benchmarks, with several misses and internal errors (CBMC 5.4 twelve misses, two errors; CBMC
5.28 sixteen errors; and ESBMC three misses and five errors). Moreover, Lazy-CSeq is typically
faster (up to 5×) than these tools, even though it incurs a noticeable overhead (typically less than

10https://github.com/CSeq/Overview.
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Table 1. Lazy-CSeq Results on SV-COMP20 Concurrency Benchmarks with Reachable Error Label

Lazy-CSeq + CBMC 5.4 Lazy-CSeq + CBMC 5.28 Lazy-CSeq + CBMC 5.28 (K)
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 8 - - - 11.7 8 - - - 11.0 8 - - - 10.9
pthread 20 1,906 20 - - - 40.2 20 - - - 29.0 20 - - - 12.5
pthread-atomic 2 182 2 - - - 4.7 1 - 1 - 4.1 1 - 1 - 4.2
pthread-c-dac 1 1,347 1 - - - 11.7 - - 1 - 10.4 - - 1 - 9.9
pthread-complex 4 663 2 - - 2 553.8 2 - - 2 516.6 2 - - 2 568.0
pthread-divine 7 440 7 - - - 30.2 7 - - - 14.6 7 - - - 8.9
pthread-driver-races 4 1,216 4 - - - 121.1 4 - - - 117.8 4 - - - 117.2
pthread-ext 8 253 8 - - - 10.2 8 - - - 10.2 8 - - - 4.4
pthread-lit 3 111 3 - - - 5.1 3 - - - 4.7 3 - - - 4.9
pthread-nondet 3 83 3 - - - 6.3 3 - - - 5.3 3 - - - 4.7
pthread-wmm 754 150,270 754 - - - 5.5 754 - - - 5.2 754 - - - 5.2
Totals 814 157,602 812 - - 2 10.0 810 - 2 2 9.1 810 - 2 2 8.8

Lazy-CSeq + ESBMC 6.4 Lazy-CSeq + SMACK 2.4.0 Lazy-CSeq+CPAchecker 1.9 (B)
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 8 - - - 17.2 8 - - - 14.3 5 - - 3 583.6
pthread 20 1,906 18 - 1 1 58.0 6 10 1 3 202.7 14 - - 6 414.4
pthread-atomic 2 182 2 - - - 5.2 - 2 - - 21.8 2 - - - 195.1
pthread-c-dac 1 1,347 - - - 1 1,000.2 - - - 1 1,000.2 - - - 1 1,000.2
pthread-complex 4 663 2 - 1 1 463.9 1 - - 3 763.3 - - - 4 1,000.2
pthread-divine 7 440 6 - 1 - 32.4 4 3 - - 23.9 5 - 1 1 200.5
pthread-driver-races 4 1,216 1 3 - - 122.2 - 4 - - 348.7 2 - - 2 712.6
pthread-ext 8 253 8 - - - 4.4 - 8 - - 41.7 8 - - - 10.9
pthread-lit 3 111 3 - - - 12.0 - 2 - 1 340.9 2 - - 1 339.2
pthread-nondet 3 83 3 - - - 11.5 - 3 - - 253.4 2 - - 1 636.0
pthread-wmm 754 150,270 754 - - - 5.8 754 - - - 9.1 754 - - - 71.5
Totals 814 157,602 805 3 3 3 11.5 773 32 1 8 23.1 794 - 1 19 96.6

Lazy-CSeq + CPAchecker 1.9 Lazy-CSeq + UAutomizer Lazy-CSeq + KLEE 2.2
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 5 - - 3 566.4 8 - - - 385.8 3 - 5 - 1.5
pthread 20 1,906 10 - - 10 554.6 5 - 8 7 403.2 10 - 3 7 367.2
pthread-atomic 2 182 - - - 2 1,000.1 1 - 1 - 453.2 1 - - 1 527.2
pthread-c-dac 1 1,347 - - - 1 1,000.2 - - - 1 1,000.2 - - 1 - 1.7
pthread-complex 4 663 - - - 4 1,000.3 - - 1 3 754.8 - - - 4 1,000.1
pthread-divine 7 440 3 - 2 2 297.5 3 - 1 3 526.1 2 - 3 2 287.2
pthread-driver-races 4 1,216 1 - - 3 789.6 - - - 4 1,001.5 - - 4 - 0.7
pthread-ext 8 253 8 - - - 21.3 4 - 4 - 76.3 7 - 1 - 3.6
pthread-lit 3 111 2 - - 1 341.3 2 - - 1 355.2 2 - - 1 334.8
pthread-nondet 3 83 1 - - 2 902.1 - - 2 1 500.7 - - 1 2 667.2
pthread-wmm 754 150,270 453 - - 301 612.4 604 - 1 149 537.6 567 - - 187 375.6
Totals 814 157,602 483 - 2 329 602.0 627 - 18 169 527.3 592 - 18 204 366.8

Each block shows the results for a different backend tool, each row corresponds to a sub-category. Tool details are as
above; CBMC 5.28 (K) denotes a version using Kissat instead of the default Minisat solver, CPAchecker 1.9 (B) denotes
the BMC configuration of CPAchecker. We report the number of files and the total number of lines of code. pass denotes
the number of correctly analyzed benchmarks (i.e., error locations found), miss, error, and t.o. the number of benchmarks
where the tool missed the error location (i.e., proclaimed the benchmark to be safe), returned an unknown result (e.g.,
unsupported feature or internal error), or exceeded the time limit, respectively, and time is the average CPU time in
seconds.

5 sec., depending on the size of the benchmark, although the pthread-driver-races benchmarks that
require very large loop unwinding bounds incur larger overheads) for the different translation
stages; this is particularly pronounced for the large but relatively simple pthread-wmm bench-
marks. However, the overheads could be reduced with an optimized implementation.

The results in Table 2 also emphasize the difficulty of building a complete, correct, and efficient
concurrency handling into a verification tool. SMACK, CPAchecker, and especially Divine miss the
error locations in a large number of benchmarks or produce errors, and SMACK and CPAchecker
time out on a large number of the pthread-wmm benchmarks. Note, in particular, that we were
unable to get Yogar-CBMC to work properly outside the SV-COMP benchmarking environment,
resulting in 779 failures.

Lazy-CSeq also outperforms the other sequentializations we implemented within the CSeq
framework. UL-CSeq performs surprisingly well, considering that it is not based on a bounded
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Table 2. Results on SV-COMP20 Benchmarks with Reachable Error Label (Other Concurrency

Verification Tools)

CBMC 5.4 CBMC 5.28 CBMC 5.28 (K)
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 3 5 - - 0.8 8 - - - 0.4 8 - - - 0.6
pthread 20 1,906 17 - 2 1 142.4 8 - 11 1 159.6 8 - 11 1 103.5
pthread-atomic 2 182 2 - - - 0.7 2 - - - 0.8 2 - - - 0.7
pthread-c-dac 1 1,347 1 - - - 6.4 - - 1 - 0.1 - - 1 - 0.1
pthread-complex 4 663 - 1 - 3 818.8 - - 3 1 250.1 - - 3 1 250.2
pthread-divine 7 440 1 5 - 1 144.6 6 - 1 - 0.7 6 - 1 - 1.4
pthread-driver-races 4 1,216 3 1 - - 1.2 4 - - - 16.2 4 - - - 18.8
pthread-ext 8 253 7 - - 1 276.6 7 - - 1 275.0 8 - - - 18.4
pthread-lit 3 111 2 - - 1 333.6 2 - - 1 333.4 2 - - 1 333.5
pthread-nondet 3 83 3 - - - 172.9 3 - - - 204.8 3 - - - 281.4
pthread-wmm 754 150,270 754 - - - 0.6 754 - - - 0.3 754 - - - 0.6
Totals 814 157,602 793 12 2 7 19.9 794 - 16 4 10.2 795 - 16 3 6.9

ESBMC 6.4 SMACK 2.4.0 Yogar-CBMC
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 8 - - - 0.3 7 1 - - 35.6 4 - 4 - 2.1
pthread 20 1,906 12 3 2 3 230.5 8 6 - 6 382.2 13 - 7 - 52.1
pthread-atomic 2 182 2 - - - 48.7 2 - - - 48.1 1 - 1 - 1.5
pthread-c-dac 1 1,347 - - - 1 1,004.5 - 1 - - 3.6 1 - - - 3.5
pthread-complex 4 663 1 - 2 1 606.9 1 2 - 1 261.3 - - 4 - 5.1
pthread-divine 7 440 6 - 1 - 101.3 4 2 - 1 150.9 1 - 6 - 2.8
pthread-driver-races 4 1,216 4 - - - 4.3 - 4 - - 22.8 4 - - - 0.8
pthread-ext 8 253 8 - - - 0.1 1 7 - - 4.9 5 - 3 - 0.4
pthread-lit 3 111 2 - - 1 333.5 1 1 - 1 338.8 3 - - - 26.0
pthread-nondet 3 83 3 - - - 0.2 1 1 - 1 337.0 3 - - - 4.5
pthread-wmm 754 150,270 754 - - - 42.3 254 8 - 492 795.2 - - 754 - 0.7
Totals 814 157,602 800 3 5 6 52.8 279 33 - 502 746.2 35 - 779 - 4.9

CPAchecker 1.9 (CPA-Seq) Divine 4.4.0 UL-CSeq
sub-category files l.o.c. pass miss error t.o. time pass miss error t.o. time pass miss error t.o. time
ldv-races 8 669 3 - 5 - 4.3 5 3 - - 2.9 8 - - - 146.1
pthread 20 1,906 9 - 11 - 121.8 11 1 8 - 139.9 10 - 1 9 487.2
pthread-atomic 2 182 2 - - - 20.0 1 - 1 - 48.2 2 - - - 39.0
pthread-c-dac 1 1,347 - - 1 - 915.6 - - - 1 1,000.2 - - - 1 1,000.0
pthread-complex 4 663 - - 4 - 332.8 1 - 1 2 502.1 - - - 4 1,000.0
pthread-divine 7 440 2 - 5 - 7.2 4 - 3 - 3.4 3 - 4 - 14.6
pthread-driver-races 4 1,216 - - 4 - 112.0 - - 3 1 251.5 - - 4 - 0.5
pthread-ext 8 253 - - 8 - 4.0 2 - 5 1 127.5 8 - - - 28.7
pthread-lit 3 111 1 - 2 - 3.6 1 - - 1 335.2 2 - - 1 334.8
pthread-nondet 3 83 - - 3 - 3.5 - 1 - - 2.4 - 3 - - 340.5
pthread-wmm 754 150,270 626 - 46 82 173.1 548 3 - 4 41.6 754 - - - 35.7
Totals 814 157,602 643 - 89 82 168.6 573 210 21 10 49.3 787 3 9 15 55.3

See Table 1 for explanations.

Table 3. Results on SV-COMP17 Benchmarks with Reachable Error Label

Lazy-CSeq + CBMC 5.4 LR-CSeq 0.5 + ESBMC 1.20 MU-CSeq 0.4 + CBMC 5.6
sub-category files l.o.c. pass miss unkn. t.o. time pass miss unkn. t.o. time pass miss unkn. t.o. time
ldv-races 8 662 8 - - - 2.4 - - 8 - 1.9 6 1 1 - 46.2
pthread 17 1,736 17 - - - 25.6 6 - 8 3 208.6 17 - - - 8.3
pthread-c-dac 1 63 1 - - - 2.0 - - 1 - 1.8 - 1 - - 1.7
pthread-atomic 2 180 2 - - - 2.2 2 - - - 5.6 2 - - - 3.5
pthread-driver-races 4 1,212 4 - - - 4.5 - - 4 - 2.1 - - 4 - 2.1
pthread-ext 8 253 8 - - - 7.5 2 - 6 - 2.9 8 - - - 5.3
pthread-lit 3 105 3 - - - 1.9 2 - - 1 667.4 2 1 - - 1.3
pthread-wmm 754 150,273 754 - - - 2.0 754 - - - 11.6 754 - - - 2.2
Totals 797 154,484 797 - - - 2.5 766 - 27 4 18.0 789 3 5 - 2.8

See Table 1 for explanations.

analysis. It finds the error location in 787 benchmarks, and despite the nine internal errors, outper-
forms CPAchecker, the only other tool that can provide proofs rather than only counterexamples,
confirming the observation from our earlier work [69].

Both LR-CSeq and MU-CSeq are no longer actively maintained and cannot handle the SV-
COMP20 benchmarks, due to some of the recently introduced preprocessing steps. In Table 3,
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we therefore report the results over the earlier and slightly smaller SV-COMP17 benchmark set.
Lazy-CSeq finds the error location in all 797 benchmarks. LR-CSeq does not support the constructs
used in 25 of these benchmarks and produces timeout or memory-out in six cases. However, it also
requires much longer in the successful cases than Lazy-CSeq (see for example its 11.6 sec average
analysis time for the pthread-wmm benchmarks, compared to 2.0 sec for Lazy-CSeq). This reflects
the much bigger search spaces introduced by the LR schema. MU-CSeq produces three misses and
five errors, but it never times out and its runtimes are comparable to those of Lazy-CSeq.

Given these results, we can formulate a strong answer to our first research question:

RQ1 Lazy-CSeq outperforms all other tools used in our evaluation, including those imple-
menting other sequentialization schemas.

Table 1 also reveals some differences between the different backends we used for Lazy-CSeq. It
performs well with all BMC-based backends: While it achieves the best results (812 successes, two
timeouts) with CBMC 5.4, its performance with CBMC 5.28, ESBMC, and even the BMC config-
uration of CPAchecker is not far behind (810, 805, and 794 successes, respectively). Using CBMC
generally produces results slightly faster than using ESBMC (9.2 sec. vs. 11.5 sec.), while the BMC
configuration of CPAchecker is substantially slower (96.6 sec.). Using SMACK as backend leads
to 40 failures (32 misses, one error, and 8 timeouts) and substantially longer runtimes across all
benchmark categories, even in the successful cases.

Surprisingly, each “sequential” BMC tool outperforms its “concurrent” version, i.e., each tool
finds more bugs in the sequentialized program versions than in original concurrent ones, with
comparable or better runtimes. This is particularly pronounced if we disregard the 754 benchmarks
from the pthread-wmm sub-category: For CBMC 5.4, we get 58 vs. 39 successes, for CBMC 5.28 56
vs. 40, respectively, 41, depending on the SAT solver, and for ESBMC still 51 vs. 46. This indicates
that the control code injected by our lazy sequentialization schema does indeed incur only mini-
mal overheads and that the schema by itself is an efficient representation of the nondeterminism
inherent to concurrency.

The situation is less clear for the CEGAR-based backends. Both CPAchecker and Ultimate Au-
tomizer perform substantially worse as sequential backends than any of the BMC-based tools, find-
ing only 483 and 627, respectively, of the bugs. Moreover, CPAchecker performs much worse on
the sequentialized benchmark versions than on the original concurrent ones. The majority of the
failures (301 out of 331 errors and timeouts) are in the pthread-wmm sub-category. These bench-
marks have a very simple structure, i.e., they comprise a small number of threads that each consist
of a sequence of conditional assignments. On the sequentialized versions, CPAchecker typically
fails with a refinement error; more precisely, it finds spurious counterexamples that it cannot re-
move from the abstract reachability trees. We conjecture that this is a consequence of the structure
of the benchmarks in this category: Since almost all assignments in the original versions involve
shared variables, the sequentialized versions have complex control flow graphs where each con-
trol flow predicate depends on a nondeterministic variable (i.e., the guessed context switch point).
Hence, the refinement fails. If we disregard this sub-category, then CPAchecker solves 30 out of
60 benchmarks, compared to the 17 it solves on the concurrent versions.

RQ2 (a) The choice of a specific sequential verification backend can affect Lazy-CSeq’s
performance considerably. (b) BMC-based backends tend to perform uniformly well,
to the level of outperforming the built-in concurrency handling of the BMC tool.
Backends based on CEGAR or symbolic execution techniques tend to perform worse
than BMC-based backends; their performance varies much more with the benchmark
category.
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Table 4. Results of Concurrent Data Structure Benchmarks

Lazy-CSeq +
CBMC 5.4 CBMC 5.28 CBMC 5.28 (K) ESBMC 6.4

safestack 3h:19m:21s 2.63GB 9h:02m:54s 5.62GB 7h:44m:08s 0.94GB t.o. 5.38GB
elimstack 6h:55m:10s 2.24GB 4h:20m:47s 1.87GB 29m:06s 1.05GB 10h:31m:04s 5.98GB
DCAS 2h:51m:31s 4.67GB 2m:26s 0.84GB 34m:08s 0.65GB 2h:22m:38s 2.17GB

CBMC 5.4 CBMC 5.28 CBMC 5.28 (K) ESBMC 6.4
safestack 17h:18m:35s m.o. 8h:37m:40s m.o. 8h:36m:38s m.o. 4h:05m:04s m.o.

elimstack 2h:22m:09s 20.46GB <1s† - <1s† - 13h:12m:55s 11.62GB
DCAS 3h:26m:34s 17.63GB <1s† - <1s† - 2m:51s m.o.

The entries report runtime and maximal memory consumption (as measured by the time command) for each
system; t.o. denotes a timeout after 24 hours, m.o. denotes that the system ran out of the allocated 32 GB memory.
Failures are shown in cursive; † denotes an internal CBMC error “pointer handling for concurrency is unsound.”

6.4 Concurrent Data Structure Benchmarks

Table 1 shows that Lazy-CSeq times out on two benchmarks from the pthread-complex sub-
category. These are derived from concurrent data structure implementations. Such data structures
often induce very hard verification problems, and we investigate here whether Lazy-CSeq scales
to such problems. Note that these implementations were not specifically designed as concurrency
benchmarks and that the errors were not deliberately injected into the code.

For the experiments described in this section, we used the sequential backends that performed
best over the SV-COMP20 benchmarks, i.e., CBMC 5.4, CBMC 5.28 (with both Minisat and Kissat
as SAT solvers), and ESBMC 6.4. We also compare Lazy-CSeq’s performance with each backend
against the performance of the respective backend’s own built-in concurrency handling using the
same loop unwinding and round bounds as for Lazy-CSeq. Each benchmark is run on the same
machine as the SV-COMP20 benchmarks, but with a 32 GB memory limit and a 24-hour time-
out. Since the errors in the data structures are independent of the payload data type, we used a
32-bit integer representation; runtimes and memory consumption are likely to increase substan-
tially for a 64-bit representation, without changing the structure of the verification problem. Ta-
ble 4 summarizes the results of these experiments; we discuss details in the following. Note that
the runtimes are dominated by the SAT/SMT solver; the sequentialization and the backend’s own
parsing process take only between 5 and 30 seconds, depending on the benchmark.

Safestack. This is a real-world implemention of a lock-free stack designed for weak memory
models. It was posted to the CHESS forum by Dmitry Vyukov.11 It is a unique benchmark in the
sense that it contains a very rare bug that requires at least three threads and five context switches to
be exposed when running under the SC semantics. In the verification literature, it was shown that
real-world bugs typically require at most three context switches to manifest themselves [86]. The
safestack benchmark, for this reason, presents a non-trivial challenge for concurrency testing and
symbolic tools. For this benchmark, we used four rounds of computation and a loop unwinding
bound of 3 to expose the bug; for Lazy-CSeq, we also optimized the inlining of functions with
parameters that are passed by value (--simplify-args).

With CBMC 5.4 as backend, Lazy-CSeq requires 3h:19m:21s (of which about three hours is spent
in the Minisat solver) and 2.69 GB memory to find the bug. Surprisingly, it becomes much slower
with the most recent version CBMC 5.28 as backend. Here, Kissat outperforms Minisat, in partic-
ular, in terms of memory consumption. With ESBMC as backend, Lazy-CSeq is unable to find the
bug and times out after 24 hours with a memory peak of 5.38 GB.

11https://social.msdn.microsoft.com/Forums/.
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Lazy-CSeq is the only tool we are aware of that can automatically find the concurrency bug in
safestack. On the concurrent original version, the two CBMC versions run out of memory after
more than 17, respectively, 8 hours, before even starting the SAT solver, while ESBMC runs out of
memory after about 4 hours.

elimstack. This is a C implementation [13] of the elimination stack by Hendler et al. [47] that
follows the original pseudocode presentation. It augments Treiber’s stack with a “collision array,”
used when an optimistic push or pop detects a conflicting operation; the collision array pairs to-
gether concurrent push and pop operations to “eliminate” them without affecting the underlying
data structure. This implementation is incorrect if memory is freed in pop operations. In particular,
if memory is freed only during the elimination phase, then exhibiting a violation (an instance of
the infamous ABA problem) requires a seven-thread client where three push operations are con-
currently executed with four pops. To witness the violation, the implementation is annotated with
several assertions that manipulate counters as described by Chebaro et al. [17]. For this benchmark,
we used two rounds of computation and a loop unwinding bound of 1 to expose the bug.

Lazy-CSeq can again automatically find the bug. Here, CBMC 5.28 improves over CBMC 5.4,
in particular, when we switch from Minisat to Kissat—this gives us almost an order magnitude
of speedup and requires only 29m:06 with a memory peak of 1.05 GB. ESBMC can also find the
bug in the sequentialized program but requires more time and memory than either of the CBMC
versions.

In this benchmark, CBMC 5.4 finds the bug faster (2h:22m:09s) on its own than as Lazy-CSeq
backend (6h:55m:10s) but requires substantially more memory (20.46 GB vs. 2.24 GB). CBMC 5.28,
in contrast, rejects the input, because it cannot guarantee soundness of its pointer handling in this
case. ESBMC also finds the bug, but requires substantially more time (12h:31m:43s) and memory
(12.11GB) than as Lazy-CSeq backend. Note that both tools on their own are still substantially
slower than Lazy-CSeq with CBMC 5.28 and Kissat; this shows the software engineering benefits
of sequentialization as verification approach: We get the performance gains from the ongoing
CBMC development for free.

DCAS. This benchmark implements a non-blocking algorithm for two-sided queues presented
by Agesen et al. [1]. The algorithm has a subtle bug that was discovered in an attempt to prove its
correctness with the help of the PVS theorem prover. The discovery of the bug took several months
of human effort. Although the bug has been automatically discovered using the model checker
SPIN (see Reference [49] and http://spinroot.com/dcas/), a generalized version of the benchmark
remains a challenge for explicit exploration approach. In fact, after 138 h of CPU-time (using 1,000
cores) and an exploration of 1011 states, the error was still undetected [50]. We have translated this
benchmark from Promela to C using the Pthread library; we also consider a more complex version
that has 10 threads while the version of Holzmann [50] only considers 8 threads. To expose the
bug, we use three rounds of computation, coupled with a mixed loop unwinding schema: All loops
with a statically determined bound are completely unwound, while all other loops were unwound
only for a single round.

Lazy-CSeq can detect the bug in this more complex variant using all four backends, but the best
results are achieved with CBMC 5.28. Here, Minisat outperforms Kissat by an order of magnitude
and detects the bug in 2m:26s, using less than 1 GB of memory. Both CBMC 5.4 and ESBMC require
more than two hours.

On the original version, only CBMC 5.4 can find the bug, succeeding after 3h:26m:34s, but us-
ing 17.63 GB of memory. CBMC 5.28 rejects the program with the same warning about pointer
handling as in the case of elimstack, and ESBMC runs out of memory after 2m:51s.
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Conclusions. Given the results shown above, we can formulate a strong answer to our final
research question.

RQ3 Lazy-CSeq scales to complex real-world concurrency verification problems. Moreover, it
is the only tool that we are aware of that solves all three problems we have investigated,
and it substantially outperforms both CBMC’s and ESBMC’s built-in concurrency han-
dling. However, the different sequential backends perform less uniformly over these
complex problems than over the simpler SV-COMP20 benchmarks, and no backend is
dominant.

6.5 Threats to Validity

Since our evaluation does not involve human subjects, many of the common threats to validity do
not apply. Nevertheless, some remain, and in this section, we discuss the threats to internal and
external validity that we have identified and the mitigation measures we have put into place.

Threats to Internal Validity. We identified errors in the measurement process, in the benchmarks,
in the tools, and in the tool usage as the main threats to the internal validity of our conclusions.

We used standard Linux tools to measure and control the resource consumption of the different
verification tools. These are known to introduce measurement errors if multiple processes share
a computational node, but we mitigated against this threat by running the individual verification
attempt on an otherwise idle processor. We report the runtimes provided by the individual verifi-
cation tools, which could in principle introduce some bias. However, these tools have been used
widely and over a long time, and no such bias has been reported in the literature.

The C programming language has a complex and sometimes unclear semantics; the benchmarks
may contain errors, and their predicted outcome (i.e., the oracle) may thus be wrong. We partially
mitigated against this threat by using the SV-COMP benchmark set, an established and community-
curated benchmark set that has been used in numerous studies and competitions. The errors in
the complex benchmarks (see Section 6.4) have been identified and published in other studies.

We mitigated against the threat introduced by systemic tool errors, which could invalidate their
results, by using mature tools that have successfully participated in the SV-COMP and have thus
been thoroughly examined. Lazy-CSeq is also available as open-source software and can thus be
inspected by third parties. We did not check the counterexample witnesses returned by the tools
(if any), because there is no comprehensive and stable checker for concurrent counterexamples.

The final threat we identified is wrong tool usage, in particular, sub-optimal parameter settings
that could negatively affect a tool’s performance. We mitigated against this threat by using the
minimal values for the loop unwinding and context switch bounds for each benchmark (which
we know from exhaustive evaluation of different tools) for all context bounded tools that can take
advantage of this, and the settings provided by tool developers for SV-COMP20 in all other cases.
We also consulted with the tool developers and incorporated any feedback that they provided.

Threats to External Validity. The only threat to external validity that we identified is selection

bias, both for the benchmarks and the tools used in our evaluation.
In particular, the SV-COMP20 benchmark set contains a large number of small and relatively

simple problems (especially in the pthread-wmm sub-category), and only very few truly hard prob-
lems, and might thus not be representative to allow a generalization of our claims. However, the
SV-COMP20 benchmark set provides a good coverage of the different concurrency constructs, and
it is widely used in other studies. We further mitigate against these threats by using the full set
of benchmarks that contain reachable error locations, rather than sub-sampling. We also report
results for each sub-category to prevent in particular the large pthread-wmm sub-category to over-
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shadow the other sub-categories. We use additional hard benchmarks from the literature to com-
plement the SV-COMP20 benchmark set.

Furthermore, we selected only unsafe benchmarks with reachable error locations. This is in
line with our focus on evaluating Lazy-Cseq’s bug-finding capabilities, but the results reported
in Sections 6.3 and 6.4 may not generalize to safe benchmarks without reachable error locations.
However, results from preliminary experiments over the safe pthread-wmm benchmarks mitigate
against this threat: Under a round bound of 2, it took Lazy-CSeq on average 4.3 seconds to claim
the benchmarks as safe when using CBMC 5.28 as backend, while it took 80.0 seconds when using
CPAchecker 1.9.

We addressed a possible tool selection bias by including the publicly available top-performing
tools from the SV-COMP competition, which represent the state-of-the-art in software verification
(at least for the C programming language). We used tools representing different technologies both
as sequential verification backends for Lazy-CSeq and for comparison. However, all tools we use
in our evaluation have been trained on (subsets of) the SV-COMP benchmark set, which may have
led to overfitting of the tools and may introduce a residual threat to validity.

7 RELATED WORK

7.1 Sequentialization

Sequentialization was originally developed by Qadeer and Wu [79] by simulating the context
switches as procedure calls and returns, which allowed reusing without any changes verification
tools that were originally developed for sequential programs. The sequentialized program only
simulates a subset of all executions of the original concurrent program, so the approach is sound
only for programs with two threads making only two context switches. Further work lifted these
limitations, following two different routes.

Eager sequentialization. Eager sequentialization schemas start with a nondeterministic guess of
the shared memory contents that are visible to the different threads at the different access times,
and then simulate all thread schedules that are compatible with this guess.

The first (but still widely used) eager schema for an arbitrary but bounded number of context
switches was given by Lal and Reps (LR) [63]. Its basic idea is to simulate in the sequential
program all round-robin schedules of the threads in the concurrent program, in such a way that
(1) each thread is run to completion, and (2) each simulated round works on its own copy of the
shared global memory. The initial values of all memory copies are guessed eagerly in the begin-
ning, while the context switch points are guessed during the simulation of each thread. At the end
a checker prunes away all infeasible runs where the initial values guessed for one round do not
match the values computed at the end of the previous round. This requires a second set of memory
copies. LR thus uses a large number of extra variables; the number of assignments involved in han-
dling these variables, the high degree of (data) nondeterminism, and the late pruning of infeasible
runs can all cause performance problems for the backend tool. Moreover, due to the eager explo-
ration, LR cannot rely on error checks built into the backend and also requires specific techniques
to handle programs with heap-allocated memory [61].

Extensions of the LR schema allow more liberal scheduling policies than LR’s round-robin sched-
uling [31], modelling of unbounded, dynamic thread creation [14, 31], and dynamically linked data
structures allocated on the heap [3].

The LR schema has been implemented in LR-CSeq for C programs with bounded thread cre-
ation [34, 35] and in STORM, which also handles dynamic memory allocation [61]. Poirot [31, 77]
and Corral [62] are successors of STORM. Rek implements a variant of LR that targets real-time
systems [16].
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Another eager sequentialization schema is based on the concept of memory unwinding (MU),
an explicit representation of the program’s write operations as a sequence that contains for each
write the writing thread, the variable or lock, and the written value. For the analysis, the MU is
guessed and each thread is translated into a simulation function where write and read accesses over
the shared memory are replaced by operations over the unwound memory. The simulation func-
tions are executed sequentially; all context switches are implicitly simulated through the MU [89].
This is implemented in the MU-CSeq tool [87, 88].

The most recent version of MU-CSeq [92] implements a MU variant called IMU that uses a sep-
arate MU for each individual shared memory location corresponding to a scalar type or a pointer.
This requires a timestamp (i.e., a distinct natural number) with each write in each individual MU
to recreate a global total order over the shared memory writes. This is crucial for the correctness
of the simulation, since it is used to synchronize the simulation of the individual threads (other-
wise, the distinct MUs can give rise to many total orders). IMU gives a simple and effective way to
support dynamic memory allocation and pointer arithmetics.

Lazy sequentialization. Lazy sequentialization schemas only guess the context switch points,
but compute the memory contents precisely, and thus explore only reachable states, which means
that they can be more efficient than eager schemas. The first lazy sequentialization schema was
given by La Torre, Madhusudan, and Parlato (LMP) [58]. However, since the local state of a
thread is not stored on context switches, the values of the thread-local variables must be recom-
puted from scratch when a thread is resumed. This recomputation poses no problem for tools that
compute function summaries [58, 59], since they can re-use the summaries from previous rounds.
Consequently, the LMP schema was empirically shown to be more effective than the LR schema
in analyzing multi-threaded Boolean programs [57, 58]. However, the recomputation is a serious
drawback for applying LMP in connection with BMC, because it can lead to exponentially growing
formula sizes [42].

Our schema is carefully designed to address this issue and aggressively exploits the structure of
bounded programs. It avoids the recomputation of the local memory by turning the thread-local
variables into static variables, so their values are persisted between the different invocations of
the thread simulation functions. It repositions the program counter after a context switch using a
sequence of jumps, which leads to more compact control-flow graphs than a large multiplexer at
the start of the thread simulation functions. Its only source of nondeterminism is the guess of the
context switch point in the main driver, so it produces compact formulas and is very effective in
practice.

Herdt et al. [48] have described a small modification of our schema that prunes empty rounds.
This has a small positive effect on most unsafe benchmarks, but can substantially speed up the
full search space exploration of safe programs. We also combined our translation with an abstract
interpretation to reduce the number of bits required to represent the variables of the sequentialized
program and thus to improve scalability even further [71, 72].

7.2 Shared Memory Concurrency Handling in SAT-based Program Verification

Biere et al. [11] introduced BMC to capitalize on the rapidly improving performance of modern
SAT/SMT solvers (see Biere [10] for a survey on BMC), but many abstraction- and automata-based
approaches also rely on SAT-based methods. Shared memory concurrency is handled either by
explicitly exploring all possible interleavings (typically up to a given bound on the number of
context switches) or by using a symbolic representation of the interleavings or the effects of shared
memory writes by the different threads.
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Explicit interleaving exploration. Cimatti et al. [20, 22] describe a predicate abstraction approach
to verify SystemC that combines the explicit exploration of the different possible interleavings
with symbolic model checking (i.e., the symbolic representation and updates of the state). This ap-
proach encodes the semantics of the non-preempting SystemC scheduler. Cordeiro and Fischer [25]
describe a similar approach in the context of a BMC-based model checker for C, which allows pre-
emptions at any visible instruction. They also exploit the SMT techniques on large problems by
encoding all possible interleavings into a single formula rather than starting the solver for each
individual interleaving.

Symbolic and concolic (i.e., mixed concrete-symbolic) execution techniques explore individual
program paths and rely on a SAT/SMT solver to prune infeasible paths and interleavings. Farzan
et al. [32] extend concolic testing to concurrent programs. They use the notion of thread interfer-
ence scenario, which is a representation of a set of bounded interferences [82] among the threads,
which define the scheduling constraints for a concurrent program run. These interference scenar-
ios are then explored in a systematic way by generating a schedule and input vectors that conform
with the scenario. However, this approach requires modifying the core of a concolic testing tool to
handle concurrent programs and thus it cannot flexibly leverage the increasing power of existing
sequential checkers. Guo et al. [43] describe an incremental symbolic execution engine for con-
current software. However, this relies on the existence of two program versions, a baseline and
an update, and uses a multi-threaded change impact analysis to minimize the effort. It remains
unclear how well this performs for a full analysis of the baseline.

All of these explicit methods face scalability problems, even under context bounds, as the num-
ber of possible interleavings grows exponentially with the number of threads and statements.

Symbolic interleaving representation. Rabinovitz and Grumberg [80] describe an approach where
program executions are encoded as partial orders; more specifically, each thread is modelled as an
SSA program, and operations on the shared memory are constrained by a global conjunct modeling
the memory model. Their implementation exploits CBMC to handle shared memory, but works
directly on the SSA program and can handle only two threads. Several other approaches [2, 38,
84, 85] follow similar ideas. In particular, CBMC’s native concurrency handling is also based on
partial orders [2].

7.3 Correctness

Here, we have concentrated on reachability problems; we have sketched an extension to detect
deadlocks elsewhere [51] and currently working on detecting data races.

However, sequentialization has also been used to prove correctness of programs. Garg and
Madhusadan [41] describe an approach that is closely related to rely-guarantee proofs and is aimed
to avoid the cross-product of the thread-local states. Only the valuation of some local variables of
the other threads (forming the abstraction for the assume-guarantee relation) is retained when sim-
ulating a thread. For this, frequent recomputations of the thread-local states are required (in par-
ticular, whenever a context switch needs to be simulated in the construction of the rely-guarantee
relations), which introduces control nondeterminism and recursive function calls even if the origi-
nal program does not contain any recursive calls. Moreover, the resulting sequentialization yields
an over-approximation of the original program and thus cannot be used for bug-finding. The LMP
schema has also been extended to parameterized programs [59, 60] and then used to prove cor-
rectness of (over-) abstractions of several Linux device drivers, but this can again not be used for
bug-finding.

We have also given a lazy schema that does not unwind loops and thus allows to analyze
unbounded computations, even with an unbounded number of context switches [70]. Its main
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technical novelty is the simulation of the thread resumption in a way that does not use gotos and
thus does not require that each statement is executed at most once. We have implemented this
translation in the UL-CSeq tool [69] and shown that (in connection with an appropriate sequential
backend verification tools) it performs well for proving the correctness of safe benchmarks, but
still remains competitive with state-of-the-art approaches for finding bugs in unsafe benchmarks.

7.4 Weak Memory Models

In this article, we assume the sequential consistency (SC) memory model [64]. However, our
approach is not tied to this memory model and can be extended to handle weak memory mod-

els (WMMs) by means of shared memory abstractions (SMAs) [90, 91]. More specifically, all
accesses to shared memory items (i.e., reads from and writes to shared memory locations and syn-
chronization primitives such as lock and unlock) are replaced by explicit calls to the SMA’s API.
The SMA can thus be seen as an abstract data type that encapsulates the semantics of the under-
lying WMM and implements it under the simpler SC model, which isolates the WMM from the
remaining concurrency aspects. SMAs can be defined both for eager [90] and for lazy [91] schemas,
but can also be used for other concurrency analysis techniques.

8 ONGOING AND FUTURE WORK

Our lazy sequentialization schema and its implementation in Lazy-CSeq have shown to be an
efficient tool for the analysis of concurrent C programs. Nevertheless, we see several avenues for
future work; some of these we already pursue.

Deadlock and data race detection. In this article, we have focused on reachability problems; we
are currently extending our approach by adding typical concurrency checks such as deadlocks and
data races. We believe that deadlock checks can be encoded efficiently in the verification stubs,
similar to the way ESBMC handles deadlock checks. For data races, we are currently investigating
an optimized encoding that relies on an extended SAT solver API to directly set propositional
variables; however, these API calls can still be generated as part of the source-to-source translation.

Weak memory models. Complex WMMs such as the Power model allow the processor to re-
order memory accesses. We believe that such re-orderings can be encapsulated in appropriate
SMA implementations. We also believe that this also opens up ways to extend our approach to
other communication primitives such as MPI [37].

Unbounded Verification. UL-CSeq [70] uses a variant of the lazy schema that does not unwind
loops and thus allows to analyze unbounded computations, even with an unbounded number of
context switches. This still performs well, both for finding bugs in unsafe programs (see Table 2)
and for proving the correctness of safe programs. Moreover, the schema maintains invariants, so
invariant synthesis techniques [33, 40] could be applied on the sequentialized program. However,
the UL-CSeq schema is not fully unbounded, as it assumes a bounded number of thread creations,
and we are working to lift this restriction.

Concolic testing and Partial order reduction. The combination of Lazy-CSeq with a sequential
symbolic execution backend such as KLEE [15] immediately gives us a concolic testing tool for
concurrent programs. In particular, if we make the input fully concrete, then we can search through
all schedules symbolically and so gain more information from a given test suite. Conversely, we
can also fix a particular schedule, by choosing specific values for the context switch points, and
leave all inputs symbolic; if no errors are found, then we could automatically rewrite the program
to adhere to the given schedule, or use a deterministic scheduler to get verified executions.
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However, this style of concolic testing subsumes the data-driven exploration of the symbolic
schedule representation under the control-driven normal path exploration, which proceeds path-
by-path. It could thus benefit from partial order reduction techniques that have been shown to
improve the performance [93] of symbolic model checking. The approach of Kahlon et al. [55] for
SAT-based analysis fits particularly well in our sequentialization schema, and we currently explore
its implementation as code-to-code translation on top of Lazy-CSeq.

Swarm-based verification. We have recently used source-to-source translation as a method to
parallelize Lazy-CSeq [36, 73]. More specifically, we developed a parametrizable translation that
generates a set of simpler program instances, each capturing a reduced set of the original program’s
interleavings. These instances can then be checked independently in parallel by Lazy-CSeq (or
indeed any tool that can handle multi-threaded C programs). This can reduce the wall-clock run
times for difficult verification problems (see Section 6.4) by orders of magnitude. We currently
investigate the use of abstract interpretation to quickly identify bug-free program instances, and
so to prevent the BMC from being overloaded.

Parallel context bounded analysis. We have recently also proposed a parallelization tech-
nique [53] based on Lazy-CSeq using CBMC v5.4 and MiniSat v2.2.1 that allows to parallelize
the analysis over multiple cores (or machines) up to a given number of execution contexts. The
idea is to partition the search space examined by the SAT solver and then to analyze it with multi-
ple solvers running in isolation. To that end, we slightly alter the main driver of the sequentialized
program and override the heuristic decisions of CBMC’s built-in SAT solver (i.e., MiniSat) at the
very beginning of the propositional analysis to run the analysis under assumptions, where each as-
sumption identifies a different subset of the execution of the program under analysis. Experiments
on complex instances (including some of the complex programs considered in this article) have
shown consistent speedups when increasing the number of available computational units within
both safe and unsafe context bounds.

Embedded systems. Embedded systems software is typically characterized by a relatively simple
program structure (e.g., bounded loops, simple data structures, no heap-allocated memory), which
makes it very suitable for BMC approaches [26]. However, embedded systems typically employ
more complicated concurrency models, based on interrupts, time-triggered events, and specific
schedulers. Such models can still be handled by sequentialization [16, 56], and we will investi-
gate how our lazy schema can be modified. The main difficulty is to correctly encode the limited
(compared to general threads) nature of the allowed context switches. We will also try to exploit
restrictions of the model (e.g., rate-monotonic scheduling) to achieve better performance.

Other types of transition systems. We believe that our method can also be applied to other types
of (concurrent) transition systems, such as Petri nets [76] or Statecharts [45], either directly or by
translating them into C and then sequentializing the resulting code. The latter solution is particu-
larly attractive for notations where code generators are already available.

9 CONCLUSIONS

We have presented a new and efficient lazy sequentialization schema for bounded multi-threaded
C programs that has been carefully designed to take advantage of BMC tools developed for
sequential programs. A core feature of our schema that significantly impacts its effectiveness is
that it just injects lightweight, non-invasive control code into the input program. The control
code is composed of few lines of guarded goto-statements and, within the added function main,
also very few assignments. It does not use the program variables, and it is clearly separated from
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the program code. This is in sharp contrast to existing sequentializations, where multiple copies
of the shared variables are used and assigned in the control code.

We have implemented our approach in the Lazy-CSeq tool as a code-to-code translation. Lazy-
CSeq can also be used as a stand-alone model checker that supports different verification tools as
backends. We validated our approach experimentally on the SV-COMP20 [8] concurrency bench-
marks suite, as well as several hard benchmarks from concurrent data structures where most other
approaches fail. The results show that:

• Lazy-CSeq can reach the error locations in all but two of the unsafe SV-COMP20 benchmarks
and outperforms state-of-the art BMC tools that natively handle concurrency.
• Lazy-CSeq scales well to hard problems and substantially outperforms other tools on these.
• Lazy-CSeq is generic in the sense that it works uniformly well with different BMC-based

backends; it also works with other backends, but the performance is more variable.

Laziness allows us to avoid handling all spurious errors that can occur in an eager exploration.
Thus, we can inherit from the backend tool all checks for sequential programs such as array-
bounds-check, division-by-zero, pointer-checks, overflow-checks, reachability of error labels and
assertion failures, and so on.

Our approach offers three general benefits that set it apart from previous approaches and that
simplify the development of full-fledged, robust model-checking tools based on sequentialization.
First, the translation only needs to handle concurrency—all other features of the programming
language remain opaque, and the backend tool can take care of them. This is in contrast to, for
example, LR, where dynamic allocation of the memory is handled by using maps [61]. Second,
the original motivation for sequentializations was to reuse for concurrent programs the technol-
ogy built for sequential program verification, and in principle, a sequentialization could work as a
generic concurrency preprocessor for such tools. However, previous implementations needed spe-
cific tuning and optimizations for the different tools (see Reference [34]). In contrast, Lazy-CSeq
works well with a variety of backends (including BMC- and CEGAR-based model checkers and
symbolic testing tools), and the only required tuning is to comply with the actual program syntax
supported by them. Finally, the clean separation between control code and program code makes it
simple to generate a counter-example starting from the one generated by the backend tool.
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